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Abstract: Meta-analysis methods exist for combining multiple microarray datasets. However, there are a wide range of 
issues associated with microarray meta-analysis and a limited ability to compare the performance of different meta-
analysis methods. Using cDNA microarray technology (Partek Genomics Suite 6.6) and global pathway analysis with 
Ingenuity Pathway Analysis tool (IPA, Inc), we examined the transcript level in type 2 diabetes mellitus (T2DM) and 
Alzheimer’s disease (AD) patients and controls. To understand the molecular link between T2DM and AD, we compared 
the gene expression pattern and pathway involved. Microarray analysis identified 235 differentially expressed genes 
between T2DM patients and controls; and 834 between AD and controls at two fold change and a false discovery rate of 
0.05. Significantly changed expression of “myeloid leukemia cell differentiation protein 1; RAS guanyl releasing protein 
1; S100 calcium-binding protein A8; prostaglandin- endoperoxide synthase 2; parvalbumin; endoplasmic reticulum 
aminopeptidase 1; phosphoglycerate kinase 1; Eukaryotic translation initiation factor 3 subunit F; Interleukin-1 beta; 
tubulin, beta 2A; glycine receptor alpha 1 and ribosomal protein S24” genes were highly associated with T2DM, whereas 
“neuronal differentiation 6; G-protein coupled receptor 83; phosphoserine phosphatase; bobby sox homolog or HMG box 
-containing protein 2; Glutathione S-transferase theta 1; alpha-2-glycoprotein 1 zinc-binding; Heat shock 70kDa protein 
1B; transportin 1, Acidic leucine-rich nuclear phosphoprotein 32 family member B; Nuclear factor of activated T-cells 5; 
inositol 1,4,5-trisphosphate 3-kinase B; prenylcysteine oxidase 1 like” were found to be strongly related with AD. We also 
found a set of differentially expressed genes; “ARP2 actin-related protein 2; Cell division control protein 42; cytoplasmic 
polyadenylation element binding protein 4; Early growth response protein 1; ectonucleotide 
pyrophosphatase/phosphodiesterase 5; folate receptor 1; glutamate-ammonia ligase; hydroxy-3-methylglutaryl-Coenzyme 
A reductase; 3-hydroxy-3- methylglutaryl-CoA synthase; interleukin 1 receptor- like 1; leukemia inhibitory factor 
receptor; metastasis associated lung adenocarcinoma transcript 1; pyruvate dehydrogenase kinase, isozyme 4; 
phosphoserine phosphatase, parvalbumin, and tubulin, beta 2A” to be present in both dataset. Altered regulation of 
intracellular signaling pathways, including Ephrin receptor, liver X receptor/ retinoid X receptor; interleukin 6; insulin-
like growth factor 1; interleukin 10 and 14-3-3-mediated signaling pathways were associated with T2DM as well as 
Alzheimer-type pathology. Our findings implicate diabetic disorders in the pathogenesis of AD, and provide a basis for 
future candidate studies based on specific pathways. 
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INTRODUCTION 

 Microarray-based expression profiling is a widely used, 
quick and inexpensive method to obtain information about 
the specific diseases. In recent years many researchers have 
embraced microarray technology and there has been an 
explosion in publicly available datasets. Examples of 
expression data repositories include Gene Expression Omni-
bus (GEO, http://www.ncbi.nlm.nih.gov/geo/), ArrayExpress 
(http://www.ebi.ac.uk/microarray-as/ae/) and Stanford Mic-
roarray Database (http://genome-www5.stanford.edu/) as well 
as researchers’ and institutions’ websites. The use of these 
datasets is not exhausted, when used wisely they may reveal 
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a depth of new information. Demand has increased to 
effectively utilise these datasets in current research as 
additional data for analysis and verification. Meta-analysis 
refers to an integrative data analysis method that traditionally 
is defined as a synthesis or at times review of results from 
datasets that are independent but related [1]. Meta-analysis 
has ranging benefits. Power can be added to an analysis, 
obtained by the increase in cohort size of the study. This aids 
the ability of the analysis to find effects that exist and is 
termed 'integration-driven discovery' [2]. Meta-analysis can 
also be important when studies have conflicting conclusions 
as they may estimate an average effect or highlight an 
important subtle variation [1, 3]. 
 There are a number of issues associated with applying 
meta-analysis in gene expression studies. These include 
problems common to traditional meta-analysis such as 
overcoming different aims, design and populations of 
interest. There are also concerns specific to gene expression 
data including challenges with variable probes and probe 
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sets, differing platforms being compared and laboratory 
effects. As different microarray platforms contain probes 
pertaining to different genes, platform comparisons become 
difficult when comparing these differing gene lists. Often the 
intersections of these lists are the only probes to be retained 
for further analysis. Moreover, when probes are mapped to 
their 'Entrez IDs' for cross platform comparisons, often 
multiple probes pertain to the same gene [4]. Due to reasons 
ranging from alternative splicing to probe location these 
probes may produce different expression results [5]. Ideal 
methods for aggregating these probe results in a meaningful 
and powerful way, is currently the topic of much discussion. 
Laboratory effects are important because array hybridisation 
is a sensitive procedure. Influences that may affect the array 
hybridisation include different experimental procedures and 
laboratory protocols [6, 7]. For more details of the 
difficulties associated with microarray meta-analysis please 
refer to Ramasamy et al. and other works [5, 8-12]. 
 Genome-wide expression analysis with DNA microarrays 
has become a mainstay of genomics research. The challenge 
no longer lies in obtaining gene expression profiles, but 
rather in interpreting the results to gain deep insights into 
biological mechanisms. To get the better understanding of 
the disease mechanisms, the functional analysis of 
differential genes can be performed using a number of dif-
ferent methods [13]. Typically they rely on Gene Ontology 
and gene set enrichment analysis - based annotation of genes 
[14]. 
 Diabetes is a disease that makes the body less able to 
convert sugar to energy. T2DM is by far the most common 
type and accounts for 90% of patients with diabetes [15] and 
is linked to lack of exercise and obesity. When diabetes is 
not controlled, too much sugar remains in the blood. Over 
time, this can damage organs, including the brain. AD is a 
progressive and fatal brain disorder that gradually destroys a 

person’s cognitive memory and ability to learn, reason, make 
judgments, communicate and carry out daily activities. 
Scientists are finding more evidence that could link T2DM 
with AD, the most common form of dementia. However, 
primary molecular mechanisms underlying in risk of diabetic 
patients to develop AD later in life is largely unknown. In 
present study, transcriptomics and associated pathways 
analysis approach has been used to establish link between 
T2DM and AD. 

MATERIALS AND METHODS 

Patients and Samples 

 The study was performed on a series of T2DM and AD 
cDNA microarray dataset retrieved from public depository at 
NCBI’s GEO database. We used an integrated 
bioinformatics approach to unify the data coming from 
different sources (blood or tissue) and platforms/arrays 
(GPL5188, GPL6244, GPL570, GPL96, GPL97, GPL8300 
etc). Classification of the AD and T2DM samples to 
distinguish between affected and controls status were used as 
the sample information provided with the data series, we 
refer readers to the original manuscripts for more details 
regarding this status (Table 1). Majority of dataset included 
in present meta-analysis study were small (~ 10 case + 10 
controls), however few studies had large cohort size as well 
(GSE 5281: 74 AD + 87 Ctrl and GSE 18732: 45 T2DM + 
47 Ctrl). 

Gene Expression Analysis 

 Affymetrix .CEL files were imported to Partek Genomics 
Suite version 6.5 (Partek Inc., MO, USA). Prior to analysis, 
data series sharing common array chips were combined 
together to increase cohort size, while for different chips, we 
combined the differentially expressed genes after individual 

Table 1. GEO Dataset Used for Meta-Analysis 
 

GEO Data  
Series ID Platform Description Source References 

GSE26972 GLP 5188, [HuEx-1_0-st] 3AD + 3 Ctrl*  Entorihnal cortex, Brain [18]  

GSE 38642 GPL 6244, [HuGene-1_0-st] 9 T2DM + 54 Ctrl  Pancreas, Islets [23]  

GSE 5281 GPL570, HG-U133_Plus_2 74 AD + 87 Ctrl  Different parts of Brain [76]  

GSE 16759 GPL570, HG-U133_Plus_2 4 AD + 4 Ctrl  Parietal lobe [19]  

GSE 28146 GPL570, HG-U133_Plus_2 7 Incipient + 8 Moderate + 7 Severe AD + 8 Ctrl  Brain [20]  

GSE 15932 GPL570, HG-U133_Plus_2 8 T2DM + 8 Ctrl  Peripheral Blood [77]  

GSE 23343 GPL570, HG-U133_Plus_2 10 T2DM + 7 Ctrl  Liver Tissue [24]  

GSE 25462 GPL570, HG-U133_Plus_2 10 T2DM + 40 Ctrl  Muscles Tissue [25]  

GSE 9006 GPL96, Human array U133A 12 T2DM + 24 ctrl  Peripheral Blood [29]  

GSE15623 GPL96, Human array U133A 9 T2DM + 5 Ctrl  Liver tissue, 4 Obese Cases [28]  

GSE 12643 GPL 8300, [HG_U95Av2] 10 T2DM +10 Ctrl  Myotubes [30]  

GSE 18732 GPL1392, Human Genome U133 Plus 2.0 45 T2DM + 47 Ctrl  Skeletal muscle [26]  

GSE 20966 GPL 1352, [U133_X3P] 10 T2DM + 10 Ctrl  Beta cells of Pancreas [27]  
Ctrl* = Control. 
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analysis of each chip type. The data was normalized using 
RMA normalization. Principal component analysis (PCA) 
was performed on all probes to visualize high dimensional 
data. PCA was used to assess quality control as well as 
overall variance in gene expression between the disease 
states. Analysis of Variance (ANOVA) was applied on the 
complete data set and differentially expressed gene list was 
then generated using False Discovery Rate (Benjamini 
Hochberg) of 0.05 with 2 fold change cut off. Disease and 
tissue type were two factors in ANOVA model and equal 
variance were assumed. Unsupervised two-dimensional 
average linkage hierarchical clustering was performed using 
Spearman’s correlation as a similarity matrix. Diabetes is 
originated from pancreas (insulin production) whereas brain 
(plaque formation) is mainly affected in AD. Despite 
knowing the fact that that gene expression varies in different 
tissues; still we used different tissues to identify the common 
genes involved in both AD and T2DM. To correlate the 
transcriptomics of AD and T2DM, initially we searched for 
dataset of patients who first had T2DM and later developed 
AD but we could not find any of such study. Additionally 
Affymetrix also keeps upgrading expression chips according 
to recent available genomic information and chips are 
changed at probe level. Thus it is not appropriate to combine 
raw CEL file and the software (Partek genome suite 6.5) 
used in present study has also limitation of using different 
platforms data simultaneously. We, therefore, identified the 
differentially expressed gene for each platform separately 
and combined the list at the end. 

Functional and Pathway Analysis 

 To define biological networks, interaction and functional 
analysis among the differentially regulated genes in breast 
cancer, pathway analyses were performed using IPA 
software (Ingenuity Systems, Redwood City, CA). A 
combined differentially expressed genes for AD and T2DM 
and their corresponding probesets ID, Gene symbol, Entrez 
gene ID as clone identifier, p-value and fold change values 
were uploaded separately into the IPA tool for core analysis 
revealing associated genetic network, canonical pathway, 
and biofunctions. The significance of the connection 
between the expression data and the canonical pathway were 
calculated by ratio and/or Fisher’s exact. Significant genes 
passing the test criterion (e.g., p-value for ANOVA, t-test, 
correlation analysis, or possibly fold change) were 
functionally categorized by gene ontology. 

RESULTS 

 Microarray provides an unbiased approach for 
identifying genome-wide changes in genes whose regulation 
is altered under pathological conditions [16, 17]. Many gene 
expression profiling studies of AD have been performed on 
RNA isolated from brain-tissue (18-22]. However pancreatic 
tissue, skeletal muscle tissue or peripheral blood samples has 
been taken by different group for diabetes to identify 
transcriptomic changes [23-30]. 
 The main focus of this study was to determine the 
transcriptomic profiles of T2DM and AD and establish link 
between them. To identify genes that are involved in T2DM 
development and later increases the risk of AD in diabetic 

patient; we retrieved hundred of T2DM and AD specimens 
with paired control from GEO database, and analyzed the 
transcriptomic profiles of nearly 28,000 annotated genes. We 
performed PCA scatter plot for visualizing the high 
dimensional array data. In the scatter plot, each point 
represents a chip. We applied PCA for identifying outliers 
and major effects in the data. The results of PCA of the 
transcriptomic data showed that the samples from the same 
tissue type clustered tightly together. Clear differences were 
also observed between these diabetic and normal tissues 
revealing distinct expression profiles for the different tissue 
types (Fig. 1). PCA mapping showed that 34.12% of the 
overall variance in the microarray dataset is depicted by the 
first three principal components. 

Identification of Differentially Expressed Genes 

 In an effort to determine how diabetes affects hypo-
thalamic function or increase the risk of AD, we did meta-
analysis of retrieved microarray expression data to identify 
the differentially expressed genes for AD and T2DM. 
Comparison of the genome-wide expression of T2DM 
revealed 235 differentially expressed genes, 179 genes of 
which were upregulated and 56 genes were downregulated (2 
fold changes, p < 0.05). Similarly we found 834 differ-
entially expressed genes, 321 up and 513 down regulated 
genes for AD. (Only top up and down regulated genes shown 
in Table 2). Cluster analysis also showed that the T2DM 
specimen agglomerated in various subsets according to 
disease and specimen type (Fig. 2). On comparing the 
differentially expressed genes (DEGs), we found few genes 
namely ARP2 actin-related protein 2 homolog (yeast), cell 
division cycle 42 (GTP binding protein, 25kDa), cytoplasmic 
polyadenylation element binding protein 4, Early growth 
response 1, ectonucleotide pyrophosphatase/ phosphodiesterase 
5, folate receptor 1, glutamate-ammonia ligase, hemoglobin 
gamma A /// hemoglobin gamma G, 3-hydroxy-3-methyl-
glutaryl-CoA reductase, 3-hydroxy-3-methylglutaryl-CoA 
synthase 1, interleukin 1 receptor-like 1, leukemia inhibitory 
factor receptor alpha, metastasis associated lung adeno-
carcinoma transcript 1, pyruvate dehydrogenase kinase, 
isozyme 4, phosphoserine phosphatase, parvalbumin, sorting 
nexin 10, and tubulin beta 2A class IIa to be present in both 
T2DM and AD transcription profile (Table 3). Among the 
these genes, many shown concordance in their expression 
pattern, however, ARP2 actin-related protein 2 homolog, 
Early growth response 1, folate receptor 1, glutamate-
ammonia ligase, 3-hydroxy-3-methylglutaryl-CoA reductase, 
3-hydroxy-3-methylglutaryl-CoA synthase 1, parvalbumin 
and sorting nexin 10 genes were over expressed in T2DM 
and under expressed in AD. We also explored the literature 
to confirm the role of these genes in development of T2DM 
and AD using common pathway involved in later stages of 
life. ACTR2 - a major constituent of the ARP2/3 complex 
located at the cell surface and is essential to cell shape and 
motility through lamellipodial actin assembly and protrusion. 
ACTR2 (ARP2/3) is involved in signaling pathways like 
Ephrin receptor, IGF-1, CDC42, angiopoietin, axonal 
guidance, RhoA etc. We overlaid differentially expressed 
genes of T2DM and AD over Ephrin receptor signaling 
pathways to establish the molecular link between T2DM and 
AD (Fig. 3). 
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Pathways and Networks Underlying T2DM and AD 

 To understand the mechanisms by which the genes alter a 
wide range of physiological processes, we examined 
molecular networks underlying T2DM and AD. Transcrip-
tomic signatures of T2DM showed significant disruption in 
signaling pathways associating genes of the LXR/RXR 
Activation, IL-6 and IL-10 Signaling, Atherosclerosis 
Signaling, Granulocyte Adhesion and Diapedesis, Actin 
Cytoskeleton Signaling (Table 4, Figs. 4, 5). Analysis by 
IPA shows a set of key genes from AD dataset that disrupt 
pathways such as 14-3-3-mediated Signaling, Huntington's 
Disease Signaling, NRF2-mediated Oxidative Stress 
Response, GABA Receptor Signaling, Remodeling of 
Epithelial Adherens Junctions, Germ Cell-Sertoli Cell 
Junction Signaling, Clathrin-mediated Endocytosis 
Signaling, and Rho GDP-dissociation inhibitor 1 (RhoGDI) 
Signaling (Fig. 6). The pathway analysis revealed a strong 
correlation between the transcriptomic signature and the 
canonical pathways that have not been implicated in T2DM 
or AD before. 
 

DISCUSSION 

 Gene microarray technology allows massively parallel 
analysis of most genes expressed in a tissue/blood, and 
therefore is an important new research tool that potentially 
can provide the investigative power needed to address the 
complexity of diabetes and neurodegenerative processes. 
Meta-analysis offers a way to enhance the robustness of 
microarray technology. The 'dataset cross-validation' meta-
analysis approach observed within this study encapsulates a 
very real problem with microarrays; gene lists selected from 
one platform or study has a limited ability to be integrated. 
This indicates that the added power through meta-analysis 
produces more robust and reliable results, eventuating in a 
gene list that is not platform dependent but truly indicative of 
the disease. 
 Diabetes mellitus is associated with a variety of 
neurologic and cerebral complications, leading to increased 
risk of AD [31, 32]. Both type 1 (insulin-dependent) and 
type 2 (insulin-resistant) diabetes are associated with 
hyperglycemia; alterations in carbohydrate, lipid, and protein  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Principal component analysis of transcriptomic data set of T2DM. Description: The top three principal components are plotted on 
the X-, Y-, and Z-axes, respectively. Overall variation between diabetes and normal, where each spot represents an individual array, can be 
seen by the clustering within each datasets (GSE 15932, D1 &C1; GSE23343, D2 & C2; and GSE25462, D3 & C3) and the separation 
between the diabetes and control. 
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metabolism; and a variety of complications affecting tissues 
of the body. These complications extend to the central 
nervous system, where they range from acute alterations in 
mental status due to poor metabolic control to greater rates 
of decline in cognitive function with age [31, 33], higher 
prevalence of depression [34], and an increased risk of AD 
[32]. In present study, we focused on linking T2DM and AD 
at transcriptomics level and found 16 genes to be common in 
both. We have not checked the possibility of random chance 
of finding these genes in two completely unrelated datasets. 
We also showed that transcription profile of T2DM and AD 
are quite different from each other. However, gene set 
enrichment analysis and ingenuity pathway analysis of 
indicated many genes and pathways common in both T2DM 
and AD. Discussing the role of each and every identified 
genes and pathways are beyond the scope of present study, 
however identified genes and pathways are listed in tables. 
Here we show the link of T2DM and AD with following 
selected pathways. 

14-3-3-Mediated Signaling Pathway 

 14-3-3 proteins were the first signaling molecules to be 
identified as discrete phosphoserine/threonine binding 
modules [35]. They are a family of conserved adaptor and 
scaffolding proteins expressed in all eukaryotic cells. There 
are seven known mammalian 14-3-3 isoforms, (β, ε, γ, η, σ, τ 
and ζ ) having ability to bind a multitude of functionally 
diverse signaling proteins, including kinases, phosphatases, 
and transmembrane receptors. This plethora of interacting 
proteins allows 14-3-3 to play important roles in a wide 
range of vital regulatory processes, such as mitogenic signal 
transduction, neuronal development, apoptosis, cell cycle 
regulation, metabolic control, host-pathogen interactions, 
and pathogenesis [36, 37]. 
 14-3-3 proteins were originally discovered as a family of 
proteins that are highly expressed in the brain. Through 
interactions with a multitude of binding partners, 14-3-3 
proteins impact many aspects of brain function including 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Heat map of DEGs using Hierarchical clustering. Dendrogram shows the change in expression levels of genes in T2DM 
(GSE23343, GSE25462, and GSE15932) and Alzheimer's disease (GSE5281, GSE28146, and GSE16759) compared to their normal 
controls. The cluster color represents the normalized expression level of a given gene in a particular tissue type or histopathological condition 
given below and is colored according to the color bar at the bottom. Red denotes upregulation and blue denotes downregulation according 
the color scale. Each column is single gene and each row is a single experiment from each subject. 
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neural signaling, neuronal development and neuroprotection. 
Although much remains to be learned and understood, 14-3-
3 proteins have been implicated in a variety of neurological 
disorders based on evidence from both clinical and 
laboratory studies [38]. Fountoulakis et al., did proteomic 
profiling of human brain by 2D electrophoresis and 
identified two isoforms, 14-3-3 γ and ε  and found these two 
multifunctional proteins in several brain regions of aged 
patients with AD in comparison with control brains [39]. 14-
3-3 proteins are also found in the neurofibrillary tangles in 
patients with AD [40]. Sluchanko et al. proposed that 14-3-3 
should be considered an important participant of the complex 
process of tau aggregation and as a potential therapeutic 
target in treating AD. 14-3-3 interacts with 
nonphosphorylated tau and promotes its interaction and 
phosphorylation by a number of protein kinases. 14-3-3 
induces aggregation of nonphosphorylated tau but does not 
affect aggregation of tau phosphorylated at specific sites 
[41]. Due to its acidic pI and high concentration in neurons, 
14-3-3 can compete with tubulin for interaction with tau. 
Binding to phosphorylated tau, 14-3-3 might inhibit its 
dephosphorylation by protein phosphatases and by this 
means indirectly affect interaction of tau with microtubules  
 

and tau aggregation. It might also promote sequestration of 
dangerous small tau oligomers and stabilize tau aggregates. 
Its increased expression suggests a role in tuning microglia 
activation which reportedly follows the deposition of 
amyloid β fibrils and is generally considered a triggering 
factor in the early steps of the onset of AD [42]. 
 Apart from AD, 14-3-3s are implicated in disease areas 
like obesity and diabetes too. 14-3-3 proteins mediate core 
cellular metabolism pathways, such as insulin signaling, 
autophagy, AMPK signaling, TOR signaling, and apoptosis, 
by regulating the activity of their key modulators [43]. 14-3-
3β isoform regulates the activity of Akt, which mediates 
insulin signaling [44] and that of glucoseresponsive 
transcription factor, ChREBP (carbohydrate response 
element-binding protein), which plays a critical role in the 
glucose-mediated induction of gene products involved in 
hepatic glycolysis and lipogenesis [45]. Kim et al., did 
comprehensive bioinformatic analysis and suggested that 
regulating 14-3-3 function may be a therapeutic target for 
impaired metabolic disorders as well as hepatic insulin 
resistance (steatosis) and T2DM [46]. Lim et al., 
characterized the abundance and subcellular location of all  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Actin-related protein 2 homolog (ACTR2), a major constituent of the ARP2/3 complex is part of Ephrin receptor signalling pathway 
that is found to be significantly involved in both T2DM and AD. Red denotes up-regulated and Green denotes down-regulated overlaid gene 
transcripts. White denotes genes are not significant in our datasets. PAK, Cdc42, Gγ subunit of GPCR CXCR4, and ARP2/3 shown in blue, 
are common proteins involved in are T2DM and AD. 
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Table 2. Differentially Expressed Significant Genes in AD and T2DM Using Cut Off p value <0.05 and Fold Change 2. A Total 834 
Genes in AD and 236 Genes in T2DM Passed the Criteria (Shown Only Top 10 Genes from Each Category) 

 

Gene Symbol Gene Name Fold Change: Up/Down Regulated p-Value 

Type 2 Diabetes Mellitus  

PTGS2 Prostaglandin-endoperoxide synthase 2  
(prostaglandin G/H synthase and cyclooxygenase) 5.4112 6.22E-08 

S100P S100 calcium binding protein P 3.96809 4.26E-17 

PVALB Parvalbumin 3.55777 0.000572 

ERAP1 Endoplasmic reticulum aminopeptidase 1 3.39638 1.66E-21 

CMTM6 CKLF-like MARVEL transmembrane domain containing 6 3.386 2.19E-18 

PGK1 Phosphoglycerate kinase 1 3.38061 3.07E-21 

CALML6 Calmodulin-like 6 3.24126 3.43E-06 

EIF3F Eukaryotic translation initiation factor 3, subunit F 3.13215 4.03E-15 

IL1B Interleukin 1, beta 3.04556 1.51E-06 

PEG10 Paternally expressed 10 3.04163 0.000246 

HBD Hemoglobin, delta -6.46233 3.59E-13 

HBG1 /// HBG2 Hemoglobin, gamma A /// hemoglobin, gamma G -3.89145 3.17E-16 

OCLN Occludin -3.22359 1.20E-18 

GLRA1 Glycine receptor, alpha 1 -2.92004 1.29E-05 

CLEC2D C-type lectin domain family 2, member D -2.81207 2.68E-21 

ALAS2 Aminolevulinate, delta-, synthase 2 -2.75868 1.89E-11 

RPS24 Ribosomal protein S24 -2.5307 1.22E-23 

EIF5A Eukaryotic translation initiation factor 5A -2.52499 0.005283 

TUBB2A Tubulin, beta 2A -2.50715 2.39E-20 

THEMIS Thymocyte selection associated -2.47733 6.96E-25 

Alzheimer's Disease 

PSPH Phosphoserine phosphatase 14.591 2.49E-06 

HSPA1B Heat shock 70kDa protein 1B 6.78252 0.014069 

GSTT1 Glutathione S-transferase theta 1 5.34884 0.001869 

AZGP1 Alpha-2-glycoprotein 1, zinc-binding 4.69948 0.000255 

MAFF v-maf musculoaponeurotic fibrosarcoma oncogene homolog F (avian) 4.58778 5.29E-09 

HSPA1B Heat shock 70kDa protein 1B 4.57247 0.030391 

DNAJB1 DnaJ (Hsp40) homolog, subfamily B, member 1 4.55671 0.043635 

ANXA1 Annexin A1 4.45278 0.030145 

SERPINH1 Serpin peptidase inhibitor, clade H (heat shock protein 4.34771 0.020741 

DNAJB6 DnaJ (Hsp40) homolog, subfamily B, member 6 4.15108 0.016794 

NEUROD6 Neuronal differentiation 6 -4.74083 0.019019 

GPR83 G protein-coupled receptor 83 -4.22193 0.005070 

CALB1 Calbindin 1, 28kDa -4.13505 0.022166 

MT1G Metallothionein 1G -3.87492 0.021796 

WIF1 WNT inhibitory factor 1 -3.64782 0.001591 

HLA-DRB6 Major histocompatibility complex, class II, DR beta 6 (pseudo) -3.60383 0.046826 

HTR2A 5-hydroxytryptamine (serotonin) receptor 2A, G protein-coupled // -3.55887 0.042213 

HSP90AB1 Heat shock protein 90kDa alpha (cytosolic), class B member 1 -3.51449 0.028148 

VSNL1 Visinin-like 1 -3.46504 0.000217 

NRN1 Neuritin 1 -3.46185 0.012741 

SST Somatostatin -3.42891 2.14E-05 
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Table 3. Role of Differentially Expressed Genes Presents Both in T2DM and AD Dataset 
 

Gene Symbol: Gene Name Fold Change 
[Ref: T2DM] 

Fold Change 
[Ref: AD] Genes/Pathways Involved in T2DM and AD 

ACTR2: ARP2 actin-related 
protein 2 homolog (yeast) 

20.55391 
[78] 

-2.46845 
[79] 

ACTR2 - a major constituent of the ARP2/3 complex located at the cell surface 
and is essential to cell shape and motility through lamellipodial actin assembly 

and protrusion. Signaling pathways: Ephrin receptor, CDC42, IGF-1, 
angiopoietin, axonal guidance, RhoA 

CDC42: cell division cycle 42 
(GTP binding protein, 25kDa) 

-2.03892 
[80] 

-2.37825 
[81, 82] 

MAP-kinase pathways; ERK, JNK and p38 activated by PAK, p21-activated 
kinase, family members. actin polymerization pathways; SCAR and WASP; and 

myosin activation filament assembly via PAK1/MLCK/myosin 
CPEB4: cytoplasmic 

polyadenylation element binding 
protein 4 

2.31332 
X 

2.43414 
[83] 

NMDA-induced signaling, regulate protein synthesis and synaptic plasticity in 
hippocampus highest levels in brain, kidney, heart, and fetal liver 

EGR1: Early growth response 1 2.75034 
[84, 85] 

-2.35064 
[86] 

Signal transduction pathways involving the mitogen-activated protein kinases 
(MAPKs) 

cell proliferation, brain plasticity and learning, apoptosis. 
ENPP5: ctonucleotide 

pyrophosphatase/ 
phosphodiesterase 5 (putative) 

-2.1055 
[87] 

-2.13982 
[88, 89] 

Pantothenate and CoA Biosynthesis, Purine metabolism, Starch and Sucrose 
Metabolism. 

It may play a role in neuronal cell communication 

FOLR1: folate receptor 1 (adult) 2.87604 
[90] 

-2.2601 
X 

a secreted protein that either anchors to membranes via a glycosyl-
phosphatidylinositol linkage or exists in a soluble form and binds folic acid and 

its reduced derivatives, and transport 5-methyltetrahydrofolate into cells. 
Mutations associated with neurodegeneration due to cerebral folate transport 

deficiency. 

GLUL: glutamate-ammonia ligase 2.0343 
[91] 

-2.4458 
[92] 

catalyzes the synthesis of glutamine and GABA from glutamate and ammonia. 
Glutamine and GABA are main source of energy and is involved in cell 

proliferation, inhibition of apoptosis, and cell signaling. 
HBG1 /// HBG2: hemoglobin, 

gamma A and G 
-3.89145 

X 
-2.55381 

X 
No Significant pathway found to be associated with T2DM or AD. 

Heme, oxygen, protein and metal ion binding. oxygen transporter activity 

HMGCR: 3-hydroxy-3-
methylglutaryl-CoA reductase 

2.22623 
[93] 

-2.18519 
[94, 95] 

HMGCR is the rate-limiting enzyme for cholesterol synthesis and is regulated 
by sterols and non-sterol metabolites derived from mevalonate. It is suppressed 
by cholesterol derived from the internalization and degradation of low density 

lipoprotein (LDL) via the LDL receptor. Interaction between HMGCR and 
ABCA1 cholesterol-related genes modulates Alzheimer's disease risk. 

HMGCS1: 3-hydroxy-3-
methylglutaryl-CoA synthase 1 

2.10163 
[96] 

-2.64968 
X 

HMGCS1 catalyzes the formation of HMG-CoA from acetyl-CoA and 
acetoacetyl-CoA. 

HMG-CoA levels seem to affect glucose-induced [Ca2+] signalling and insulin 
secretion in rat beta-cells, but no direct relation between HMGCS and diabetes 
was found until now. Inhibitors of HMG-CoA reductase are clinically used to 

prevent hyperlipidemia in type 2 diabetic patients. 

IL1RL1: interleukin 1 receptor-
like 1 

 

2.33809 
[97] 

3.85103 
[98] 

IL1RL1 is a membrane receptor for IL-6, and IL-33, involved in TH2 
inflammatory responses, eosinophilia and cell growth 

its stimulation recruits MYD88, IRAK1, IRAK4, and TRAF6, followed by 
phosphorylation of MAPK3/ERK1 and/or MAPK1/ERK2, MAPK14, and 

MAPK8 

LIFR: leukemia inhibitory factor 
receptor alpha 

2.26948 
[99] 

4.10647 
[100, 101] 

LIFR is a polyfunctional cytokine involved in Cytokine-cytokine receptor 
interaction and Jak-STAT signaling pathway that affects the differentiation, 

survival, and proliferation of a wide variety of cells 
MALAT1: metastasis associated 
lung adenocarcinoma transcript 1 

2.54809 
X 

2.24481 
X 

No Significant pathway found to be associated with T2DM or AD. Predictive 
marker for metastasis development in lung cancer 

PDK4: pyruvate dehydrogenase 
kinase, isozyme 4 

2.53208 
[102, 103] 

2.39544 
[104-106] 

PDK4 is overexpressed in skeletal muscle in T2DM, resulting in impaired 
glucose utilization. 

It also play role in AD through ERK signaling pathway 

PSPH: phosphoserine phosphatase 2.10526 
[107] 

14.591 
X 

PSPH catalyzes the last step in serine biosynthesis. It is highly induced in 
proliferative normal keratinocytes 

PVALB: parvalbumin 3.55777 
[108, 109] 

-2.35959 
[110, 111] 

Involved in calcium signaling 
Localised in fast-contracting muscles, where its levels are highest, and in the 

brain and some endocrine tissues 

SNX10: sorting nexin 10 2.2198 
X 

-2.01543 
X 

No Significant pathway found to be associated with T2DM or AD. 
SNX10 has role in regulating endosome homeostasis, protein sorting, 
intracellular trafficking, osteoclast formation and resorption activity 

TUBB2A: tubulin, beta 2A class  -2.50715 [112] -2.30051 
[113] Apoptotic pathways; Posttranslational folding; Microtubule-based processes 

[Ref:T2DM] and [Ref:AD] = Reference showing association of genes/pathways involved in T2DM and AD respectively. 
X= No report showing disease association in literature for genes identified in our dataset. 
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Table 4. Canonical Pathways Predicted by Ingenuity Pathway Analysis. The Table Shows the Significantly Overrepresented 
Canonical Pathways Across the Whole Dataset of Differentially Expressed Genes 

 

Ingenuity Canonical Pathways -log (p-Value) Molecules 

Significant Canonical Pathways for DEGs of T2DM Dataset 

LXR/RXR Activation 4.61E00 IL33, IL1RL1, IL1B, S100A8, IL1R1, PTGS2, IL6, HMGC, APOD 

IL-6 Signaling 3.92E00 IL33, IL8, IL1RL1, IL1B, IL1R1, IL6, MCL1, ATM 

IL-10 Signaling 3.64E00 IL33, CCR1, IL1RL1, IL1B, IL1R1, IL6 

Atherosclerosis Signaling 3.06E00 IL33, IL8, IL1B, S100A8, IL6, ALOX5, APOD 

Granulocyte Adhesion and 
Diapedesis 2.91E00 IL33, IL8, CXCL9, IL1RL1, FPR2, MMP10, IL1B, IL1R1 

Actin Cytoskeleton Signaling 2.82E00 MYH4, ACTR2, PAK2, CDC42, SSH2, FGF7, GNG12, ACTA1, ATM 

Paxillin Signaling 2.77E00 ITGA2B, PAK2, CDC42, PTPN12, ACTA1, ATM 

EIF2 Signaling 2.76E00 RPS24, RPL27A, RPL37A, EIF3F, PDPK1, RPS27L, RPS11, ATM 

Hepatic Cholestasis 2.76E00 IL33, IL8, IL1RL1, IL1B, IL1R1, IL6, PRKCB 

Graft-versus-Host Disease Signaling 2.63E00 IL33, TRD@, IL1B, IL6 

Clathrin-mediated Endocytosis 
Signaling 2.63E00 ACTR2, RAB7A, S100A8, CDC42, FGF7, ACTA1, ATM, APOD 

mTOR Signaling 2.61E00 RPS24, RHEB, EIF3F, PDPK1, RPS27L, RPS11, ATM, PRKCB 

fMLP Signaling in Neutrophils 2.6E00 ACTR2, FPR2, CDC42, GNG12, ATM, PRKCB 

B Cell Receptor Signaling 2.41E00 BCL10, EGR1, PDPK1, CDC42, PTEN, ATM, PRKCB 

Significant Canonical Pathways for DEGs of Alzheimer's Disease Dataset 

14-3-3-mediated Signaling 6.47E00 
MAP2K4, PIK3CA, TUBB3, YWHAG, PIK3C2A, YWHAH, TUBB4B, TUBB2A, YWHAZ, 
TUBA4A, TUBB, TUBA1B, PRKCG, FOS, PLCE1, TUBA3C/TUBA3D, YAP1, TUBA1C, 

SNCA 

Huntington's Disease Signaling 6.44E00 
MAP2K4, PIK3CA, VTI1A, HSPA1A/HSPA1B, PACSIN1, HSPA5, AP2A2, EP300, NSF, 
CDK5, CPLX2, VAMP3, DNAJB1, GNG4, GRIN2B, PIK3C2A, GNG3, STX1A, RPH3A, 

SNAP25, PRKCG, TAF9B, HSPA8, DNM1, ATP5B,  

NRF2-mediated Oxidative Stress 
Response 6.4E00 

MAP2K4, MGST1, PIK3CA, FTL, PIK3C2A, PRDX1, DNAJB4, HSPB8, ACTG1, MAFF, 
EP300, PRKCG, CUL3, GSTT1, FOS, STIP1, DNAJC1, SQSTM1, DNAJB6, DNAJB1, TXN, 

FKBP 

GABA Receptor Signaling 5.64E00 DNM1, NSF, SLC32A1, AP2M1, GABRG2, GABRA4, GAD1, GABRD, GABRA1, AP2A2, 
GA 

Remodeling of Epithelial Adherens 
Junctions 5.53E00 ACTR2, TUBB3, NME1, RAB5A, TUBB4B, TUBB2A, TUBA4A, TUBB, ACTG1, 

TUBA1B, DNM1, TUBA3C/TUBA3D, TUBA1C 

Germ Cell-Sertoli Cell Junction 
Signaling 5.15E00 

RND2, MAP2K4, PIK3CA, TUBB3, PIK3C2A, TUBB4B, TUBB2A, ITGA2, TUBA4A, 
CDC42, TUBB, TUBA1B, ACTG1, TGFBR2, PAK1, RHOQ, PAK3, SORBS1, 

TUBA3C/TUBA3D 

Clathrin-mediated Endocytosis 
Signaling 4.58E00 ACTR2, AP2M1, PIK3CA, PIK3C2A, RAB5A, NUMB, ITGB8, SH3GL2, CDC42, AP2A2, 

ACTG1, DNM1, HSPA8, SYNJ1, AMPH, AAK1, RAB11A, CSNK2B, CTTN, ITGB5, RBP4 

RhoGDI Signaling 4.44E00 RND2, ACTR2, ITGA2, WASF1, GNG3, CDC42, ACTG1, EP300, PAK1, CDH9, 
ARHGEF10, RHOQ, PAK3, EZR, CD44, CDH8, GNG2, GNG4, CDH13, PI4KA 

Protein Ubiquitination Pathway 4.15E00 
PSMB3, PSMA3, DNAJB4, HSPA1A/HSPA1B, UBE2N, HSPB8, HSPA5, PSMB6, UCHL1, 
PAN2, HSP90AB1, USP47, DNAJC1, DNAJB1, PSMB4, HSPD1, UBE3A, SKP1/SKP1P2, 

HSPA8, PSMB7, PSMB2, ANAPC5, DNAJB6, PS 

Virus Entry via Endocytic Pathways 4.08E00 AP2M1, PIK3CA, PIK3C2A, ITGA2, ITGB8, CDC42, ACTG1, AP2A2, PRKCG, FOLR1, 
DNM1, CAV1, ITGB5 

Sertoli Cell-Sertoli Cell Junction 
Signaling 3.88E00 MAP2K4, TUBB3, TJP2, TUBB4B, TGFBR3, TUBB2A, ITGA2, TUBA4A, CSDA, SYMPK, 

TUBB, CDC42, ACTG1, TUBA1B, SORBS1, TUBA3C/TUBA3D, TUBA1C, GUCY1B3 

Gap Junction Signaling 3.62E00 PIK3CA, TUBB3, PIK3C2A, TUBB4B, TUBB2A, TUBA4A, TUBB, TUBA1B, ACTG1, 
PRKCG, PLCE1, CAV1, TUBA3C/TUBA3D, TUBA1C, GUCY1B3, PRKAR1A, HTR2A 

Tec Kinase Signaling 3.59E00 RND2, MAP2K4, PIK3CA, PIK3C2A, TNFRSF10B, ITGA2, GNG3, ACTG1, PRKCG, 
STAT4, TLR4, FOS, PAK1, RHOQ, PAK3, GNG2 
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seven 14-3-3 isoforms in mouse and human pancreatic beta 
cells and their study revealed specific regulation, localisation 
and anti-apoptotic roles among the isoforms. 14-3-3ζ 
specifically has role in preventing BAD-BAX mitochondrial 
localisation and protecting beta cells from multiple stresses, 
implicating that 14-3-3 proteins are pro-survival signaling 
hubs [47]. Another study done by using transgenic mice with 

cardiac-specific expression of a dominant-negative 14-3-3 
protein mutant (DN 14-3-3), suggests that depletion of 14-3-
3 protein induces cardiac oxidative stress, inflammation and 
remodeling after experimental diabetes induction mediated 
through p38 MAPK, MAPKAPK-2 and NF-κB signaling 
[48]. 

(Table 4) contd….. 

Ingenuity Canonical Pathways -log (p-Value) Molecules 

Epithelial Adherens Junction 
Signaling 3.44E00 ACTR2, TUBB3, TUBB4B, TGFBR3, TUBB2A, TUBA4A, WASF1, CDC42, TUBB, 

ACTG1, TUBA1B, TGFBR2, NOTCH2, SORBS1, TUBA3C/TUBA3D, TUBA1C 

Aldosterone Signaling in Epithelial 
Cells 3.21E00 PIK3CA, PIK3C2A, DNAJB4, HSPA1A/HSPA1B, HSPB8, HSPD1, HSPA5, PRKCG, 

HSPA8, PLCE1, HSP90AB1, DNAJC1, DNAJB1, DNAJB6, PI4KA, HSPB1 

eNOS Signaling 3.12E00 LPAR4, PIK3CA, CAMK4, PIK3C2A, HSPA1A/HSPA1B, FLT1, HSPA5, HSPA8, CCNA2, 
CALM1, CAV1, GUCY1B3, PRKAR1A 

Axonal Guidance Signaling 3.01E00 

KLC1, PIK3CA, TUBB, CDC42, PAK1, NFAT5, PLCE1, CDK5, SEMA3D, DCC, 
TUBA3C/TUBA3D, UNC5D, ADAM23, TUBA1C, GNG4, EPHA7, ACTR2, TUBB3, 

PIK3C2A, ADAMTS1, CXCR4, TUBB4B, TUBB2A, ITGA2, TUBA4A, GNG3, TUBA1B, 
PRKCG, PAK3, GNG2, PR 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

Fig. (4). LXR RXR activation signalling overlaid with significant genes of T2DM and AD dataset. Red denotes up-regulated and green 
denotes down-regulated whereas white denotes genes not significant in our datasets. HMGCR*, IL-1R, LDL and HDL were present in both 
T2DM and AD; IL-1, IL-6 and Cox2 were present in T2DM dataset only whereas ABCA1, SCD1, and TLR4 were AD associated genes. 
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LXR/RXR (Liver X Receptor/Retinoid X Receptor) 
Activation Pathway 

 Liver X receptors (LXRs) are a member of the nuclear 
receptor family of transcription factors that are activated by 
oxysterol ligands and form functional heterodimers with the 
retinoid X receptors (RXRs). The RXRs are nuclear 
receptors that mediate the biological effects of retinoids by 
their involvement in retinoic acid-mediated gene activation. 
RXRα is the dimerization partner for the type II nuclear 
receptors that includes the LXR. LXR/RXR is involved in 
the regulation of lipid metabolism, inflammation, cholesterol 
to bile acid catabolism and glucose metabolism [49]. 
Activation of LXR decreases blood glucose levels in a 
number of diabetic animal models [50]. LXRβ activation in 
pancreatic β -cells increases insulin secretion and insulin 
biosynthesis [51]. The increase in insulin secretion is 
mediated via modulation of glucose/lipid metabolism [51, 
52]. 

 Two major targets of LXR and RXR (retinoic acid 
receptors) regulation are ABCA1 and SCD (Stearoyl-CoA 
desaturase), and the expression of these genes individually 
decreases the deposition of Aβ. LXRα and LXRβ double 
knockout mice develop neurodegenerative changes in brain 
tissue [53, 54]. LXR agonists are effective for treatment of 
murine models of atherosclerosis, diabetes, anti-
inflammation, and Alzheimer's disease. T0901317, a LXR 
agonist decreases Aβ production in AD mouse model [55]. 
GW3965, a synthetic LXR agonist, improves glucose 
tolerance in a murine model of diet-induced obesity and 
insulin resistance by regulating genes involved in glucose 
metabolism in liver and adipose tissue [56]. However, 
treatment with rexinoids raises triglyceride levels (via 
transactivation of SREBP-1c by LXR/RXR heterodimers), 
suppresses the thyroid hormone axis, and induces 
hepatomegaly, thereby, restraining their use as therapeutic 
agents for the treatment of T2DM and insulin resistance [57]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). IL-6 signalling pathway overlaid with significant genes of T2DM and AD dataset. Red denotes up-regulated and Green denotes 
down-regulated whereas white denotes genes not significant in our datasets. PI3K and IL-1R genes were present in both T2DM and AD; IL-
1, IL-6, IL-8, MCL1* were present in T2DM dataset only whereas remaining were AD associated genes. 
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Ephrin Receptor Signaling Pathway 

 Ephrin receptors (Ephs) are a group of receptors that are 
activated in response to binding ephrin. Ephs form the 
largest known subfamily of receptor tyrosine kinases 
(RTKs). Both Ephs and their corresponding ephrin ligands 
are membrane-bound proteins that require direct cell-cell 
interactions for Eph receptor activation. Eph/ephrin signaling 
has been implicated in the regulation of a host of processes 
critical to embryonic development, angiogenesis [58], stem 

cell differentiation and cancer [59]. Unlike most other RTKs, 
Ephs have a unique bi-directional signaling capacity to 
initiate an intercellular signal in both the receptor-bearing 
cell (“forward” signaling) and the opposing ephrin-bearing 
cell (“reverse” signaling) following cell-cell contact [60]. 
 EphA-ephrin-A-mediated beta cell communication is also 
bidirectional: EphA forward signaling inhibits insulin 
secretion, whereas ephrin-A reverse signaling stimulates 
insulin secretion. EphA forward signaling is downregulated 
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Fig. (6). 14-3-3-mediated signaling pathway overlaid with significant genes of T2DM and AD dataset. Red denotes up-regulated and Green 
denotes down-regulated whereas white denotes genes not significant in our datasets. PI3K, PKC and Tubulin are present in T2DM only 
whereas remaining are AD associated genes. 
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in response to glucose, indicating that, under basal 
conditions, beta cells use EphA forward signaling to 
suppress insulin secretion but under stimulatory conditions, 
they shift to ephrin-A reverse signaling to enhance insulin 
secretion. This explains how beta cell communication in 
pancreatic islets conversely affects basal and glucose-
stimulated insulin secretion to improve glucose homeostasis 
[61]. Kaplan et al., examined the role of the EphA2 receptor 
and ephrin-A1 ligand in human corneal epithelial cell 
migration by IHC analysis of healthy and diabetic corneal 
cells [62]. They found that EphA2 attenuates corneal 
epithelial cell migration when stimulated by ephrin-A1 
ligand in a manner that involves the suppression of Akt. 
Elevated levels of ephrin-A1 may contribute to diabetic 
keratopathies by persistently engaging EphA2 and 
prohibiting Akt-dependent corneal epithelial repair 
processes. 
 Ephrin Bs are essential components of the Reelin 
receptor/signaling pathway control neuronal migration 
during the development of the nervous system. Loss of 
function of secreted glycoprotein Reelin in humans results in 
the severe developmental disorder lissencephaly and has 
been associated with other neurological disorders such as 
epilepsy, schizophrenia and Alzheimer's disease [63]. Eph 
receptors are a probable target for novel therapeutic 
strategies in AD. Reduced EphA4 and EphB2 receptor levels 
have been reported in postmortem hippocampal tissue from 
patients with incipient stage of AD [64]. Amyloid-β 
oligomers cause cognitive deficits in AD by impairing 
neuronal NMDA-type glutamate receptors, whose function is 
regulated by the receptor tyrosine kinase EphB2. EphB2 is 
part of the NMDA signaling pathway, depletion of EphB2 is 
critical in amyloid-β-induced neuronal dysfunction and 
restoring its expression rescues cognitive function in animal 
model of AD [65]. Recently, it has also been reported that γ-
secretase-mediated EphA4 signaling pathway is involved in 
synaptic pathogenesis of AD [66]. EphA4 is a substrate of γ-
secretase, and the γ -secretase-cleaved EphA4 intracellular 
domain (EICD) is known to enhance the formation of 
dendritic spines via activation of the Rac signaling pathway 
[67]. 

Interleukin 6 Signaling Pathway 

 IL-6 is a cytokine regulating acute-phase responses and 
lymphocyte stimulatory factors. The central role of IL-6 in 
inflammation makes it an important target for the 
management of infectious and inflammatory diseases. IL-6 
responses are transmitted through Glycoprotein 130 (GP130) 
of JAK/STAT pathway, which serves as the universal signal-
transducing receptor subunit for all IL-6-related cytokines. In 
addition, IL-6 also activates the extracellular signal-regulated 
kinases (ERK1/2) of the mitogen activated protein kinase 
(MAPK) pathway [68]. The upstream activators of ERK1/2 
include RAS and the src homology-2 containing proteins 
GRB2 and SHC. The SHC protein is activated by JAK2 and 
thus serves as a link between the IL-6 activated JAK/STAT 
and RAS-MAPK pathways. The phosphorylation of MAPKs 
in response to IL-6 activated RAS results in the activation of 
nuclear factor IL-6 (NF-IL6), which in turn stimulates the 
transcription of the IL-6 gene [69]. 

 Pro-inflammatory cytokines are important mediators of 
β-cell demise in type 1 as well as T2DM, where a state of 
chronic inflammation may persist [70]. Expression of IL-13 
and IL-6 are reported to be altered in β -cells during 
enteroviral infection of islet cells, thereby influencing 
development of diabetes in humans. Interleukin-6 (IL-6) has 
been recently reported to have dual differential kind of role 
in modulating insulin sensitivity, with evidence as both an 
enhancer and inhibitor of insulin action [71]. Elevated brain 
levels of IL-6, secreted mainly from activated local 
astrocytes, contribute to pathological events including 
neuroinflammation and neurodegeneration [72]. Thus, 
inhibition of pathological IL-6 expression provides a 
rationale strategy for targeting the onset or further 
progression of neurological disorders including AD, multiple 
sclerosis, Parkinson's disease [73] and traumatic brain injury 
[74]. IL-6 is a crucial player in neuroinflammation owing to 
its influence on the three vital branches of this process: 
astrogliosis, microgliosis and blood–brain barrier integrity 
[75]. 

CONCLUSION 

 Microarray is most widely used tool for gene expression 
profiling of diseases. However, it brings several major 
bioinformatics and resource problems that frequently hinder 
the optimal application of this technology. Meta analysis of 
transcriptomics data is an important approach to address 
many of these concerns and to investigate the complexity 
and link of T2DM and AD. We identified many common 
genes and pathways that support the strong link between 
T2DM and AD and possibility of T2DM to act as risk factor 
for AD. Present study highlight that these genes and 
signaling pathways in diabetes are candidates for further 
investigation, both for understanding AD pathogenesis, and 
as potential targets for developing new treatment strategies 
which are specifically designed for diabetes and AD. 

LIST OF ABBREVIATIONS 

AD = Alzheimer's Disease 
T2DM = Type II Diabetes Mellitus 
IPA = Ingenuity Pathway Analysis 
GEO = Gene Expression Omnibus 
PCA = Principal component analysis 
ANOVA = Analysis of Variance 
DEGs = differentially expressed genes. 
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