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A B S T R A C T

Osteoarthritis (OA) is the most common form of joint disease. This review aimed to consolidate the

current evidence that implicates the inflammatory process in the attenuation of synovial lubrication and

joint tissue homeostasis in OA. Moreover, with these findings, we propose some evidence for novel

therapeutic strategies for preventing and/or treating this complex disorder. The studies reviewed

support that inflammatory mediators participate in the onset and progression of OA after joint injury.

The flow of pro-inflammatory cytokines following an acute injury seems to be directly associated with

altered lubricating ability in the joint tissue. The latter is associated with reduced level of lubricin, one of

the major joint lubricants. Future research should focus on the development of new therapies that

attenuate the inflammatory process and restore lubricin synthesis and function. This approach could

support joint tribology and synovial lubrication leading to improved joint function and pain relief.
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1. Introduction

Osteoarthritis (OA) has long been considered a ‘‘wear and tear’’
disease. Traditionally, the etiology of OA has been linked to
increased mechanical overload on weight bearing joints, anatomi-
cal joint incongruence, and fragility of articular cartilage [1]. How-
ever, this concept is gradually being challenged as evidence
accumulates to support an ‘‘inflammatory’’ basis of OA.

The capacity for joint repair gradually diminishes with aging.
The articular cartilage component of the joint is often damaged in
focal or more extensive areas after joint injury. Cartilage is a
connective tissue that is neither vascularized nor innervated and
therefore cannot respond to acute injuries with the usual cycle of
reparative responses [2]. Chondrocytes, the unique cells that are
present in cartilage, are sparsely distributed within the tissue and
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have a low reparative capacity because they have very low
metabolic activity.

OA is a complex disease with a multifactorial etiology that
includes aging, synovitis, ‘‘low-grade’’ systemic inflammation,
obesity, prior joint injuries, gender, genetic factors and metabolic
syndrome among the most prominent risk factors for development
and progression [3–5] (Fig. 1). Another fundamental aspect of the
OA pathophysiological process is the reduced boundary-lubricat-
ing ability of synovial fluid. This aspect is associated with reduced
level of lubricin, one of the major joint lubricants [6].

In this review, we discuss the most important findings
regarding the inflammatory process and the altered lubricating
ability in the joint tissue following acute injury, to highlight a
possible cross-link between these 2 pathological aspects of OA, a
complex disease. The key observations in this review should
provide further motivation for studying the link between these
2 important features of OA, laying the foundation for novel
therapeutic approaches and innovative treatments.
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Fig. 1. Several factors responsible for the development of primary or secondary osteoarthritis (OA).
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2. Inflammatory theory of OA

The ‘‘inflammatory theory’’ of OA onset is certainly not a recent
concept. Indeed, in a paper published in 1975, George Ehrlich
described a cohort of predominantly menopausal females pre-
senting a deforming and inflammatory OA, some of whom showed
changes characteristic of rheumatoid arthritis (RA) [7]. This was
probably the first paper that emphasized inflammation as a key
component of OA. Although the original observations were
published more than 40 years ago, the importance of Ehrlich’s
findings has not been fully appreciated until recently. The major
players in OA research have realized the importance of this aspect
and proposed a connection between inflammation, synovitis and
structural changes in OA. The advent of molecular biology and its
introduction to bone and joint research dates back to the 1990s.
Numerous soluble mediators of inflammation, such as cytokines
and prostaglandins, were discovered and found to be associated
with increased production of matrix metalloproteinases (MMPs),
primary enzymes responsible for cartilage degradation [8]. More
recent data indicate subchondral bone, cartilage and synovium as a
source of inflammatory mediators in OA progression and cartilage
degeneration [2,9]. These data emphasize the complexity of the
disease, implicating the entire joint as an organ and not just
cartilage as a joint tissue. Such findings are supported by a recent
discovery of the effect of pro-inflammatory cytokines on the
reduced production of lubricin and the consequent decreased
boundary-lubricating ability of synovial fluid in OA joints, which
suggests the important role of lubricin in the development of this
complex disease [10].

2.1. Inflammatory cytokines

A primarily destructive impact on cartilage is the effect of
inflammatory cytokines associated with biomechanical factors. The
latter have a multilevel impact on joint tissues, involving premature
aging, chondrocyte apoptosis and decreased synthesis of key
components of extracellular matrix. Inflammatory cytokines also
contribute to increased synthesis of many proteolytic enzymes,
responsible for cartilage degradation and determine the reduced
lubricating ability of synovial fluid. Among the inflammatory
cytokines determining the loss of metabolic homeostasis of joint
tissues by promoting catabolic and destructive processes, those with
the greatest effect are interleukin 1b (IL-1b), tumor necrosis factor a
(TNF-a), IL-6, IL-15, IL-17, and IL-18 (Fig. 2 and Table 1) [11].
2.2. Synovitis

Synovitis is a critical feature of OA and many studies have focused
on this condition as a key driver of the disease process. Synovitis is
defined as the local inflammation of synovial membrane, usually
painful, characterized by joint swelling due to synovial thickening or
effusion. Synovial inflammation occurs frequently after traumatic
joint injury and is associated with increased pain and dysfunction
[12]. It probably occurs as degraded cartilage fragments and
extracellular matrix macromolecules are released into the joint
and contact the synovium. Synovial cells react to the release of these
fragments/molecules and become activated, thereby producing
inflammatory mediators [8]. The latter stimulate chondrocytes in
the superficial layer of cartilage and the synovium itself to synthesize
MMPs and other matrix-degrading enzymes that increase cartilage
degradation. These mediators are also responsible for synovial
angiogenesis and increased synthesis of inflammatory cytokines and
MMPs by synovial cells themselves, for a vicious cycle [13]. Clearly,
the described events affect the lubricating ability of the joint as
confirmed by Jay et al. in a study of the lubricating ability of aspirated
synovial fluid from patients with knee joint synovitis. The study
demonstrated the non-lubricating bearing and increased catabolism
of collagen II in synovial fluid aspirates of these patients, so collagen II
may play a fundamental role in acute cartilage destruction ultimately
resulting in post-traumatic OA [14].

2.3. Inflammaging

Age is the most important risk factor for OA onset. The aging
process does not necessarily relate to the passage of time but
depends also on our lifestyle. Indeed, 2 different types of cellular
senescence are replicative and stress-induced. The former is
associated with an arrest in cell-cycle progression, resulting from
a natural telomere shortening process and found in cells in older
adults. The latter is independent of telomere length and is associated
with several kinds of stresses, especially oxidative stress and
inflammatory processes established during OA onset [15]. ‘‘Inflam-
maging’’ refers to low-grade inflammation that occurs during
physiological aging. According to this concept, the inflammatory
process, as well as all events closely linked to it, contributes to
chondrocyte senescence, which results in the age-related degrada-
tion of cartilage, subchondral bone, and synovium, thereby
determining the early development of OA [16]. Interestingly, the
link between inflammation and aging appears to be interdependent



Fig. 2. The pro-inflammatory cytokines, including interleukin-1 beta (IL-1b), tumor necrosis factor alpha (TNF-a), interleukin-8 (IL-8), interleukin-18 (IL-18), interleukin-6

(IL-6) and chitinase-3-like protein 1 (CHI3L1) and chitotriosidasi (CHIT1), are upregulated in osteoarthritis (OA). These cytokines contribute to the pathogenesis of OA by

mediating the destruction of articular cartilage within the joint. The degenerative processes involve different types of cells including monocytes, macrophages, lymphocytes,

osteoclasts, chondrocytes and synoviocytes.
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because it determines the early senescence of chondrocytes and also
appears to be its direct consequence. Indeed, activity is impaired in
senescent chondrocytes as compared with normal chondrocytes,
with evidence of the ‘‘senescent secretory phenotype’’, character-
ized by increased expression of genes encoding for inflammatory
cytokines such as IL-6, IL-1b and several members of the MMP
family [17]. The increased expression of both advanced glycation
end-products (AGEs) and AGE receptors (RAGEs) in OA chondrocytes
has been associated with dysregulated signalling pathways, altered
synthetic activity and enhanced sensitivity to cytokines and
chemokines, which in turn trigger the expression of MMPs and
other inflammatory mediators [18]. Interestingly, lubricin produc-
tion in aged rats appeared to be decreased, so chondrocyte
senescence may have an important role in the lubricating properties
of cartilage tissue [16]. This observation is probably a direct
consequence of the above suggested strict link between aging and
inflammation.

2.4. Chitinases

Lately, much interest has been given to some members of the
family of chitinases such as chitotriosidase (CHIT1) and chitinase
3-like-1 (CHI3L1) involved in OA pathophysiology. Elevated levels
of these proteins have been reported in several chronic inflamma-
tory and degenerative disorders [19]. In our recent study, we
observed increased expression of these proteins in a rat model of
OA. Their production has been closely related to inflammatory
processes and pro-inflammatory cytokines, and their overexpres-
sion was suggested to be involved in cartilage remodelling and
degradation processes in OA joints [20]. Moreover, in another
recent study, we demonstrate an inverse proportional relation of
the expression of CHI3L1 and lubricin in normal and osteoarthritic
rat articular cartilage. Levels of lubricin increased in normal
cartilage and decreased in OA cartilage and levels of CHI3L1
increased in OA cartilage and decreased in normal cartilage. These
2 glycoproteins may be functionally associated with the develop-
ment of OA, which again underlines the important link between
the inflammation and lubricating properties of articular cartilage
tissue in OA onset [21].

3. Inflammation and lubricin synthesis

3.1. Lubricin

The biology of OA has been attributed to changes in lubrication
at the surface of articular cartilage. This aspect of the pathophysi-
ological process of OA has not been entirely understood. Lubricin is
a surface-active mucin-like glycoprotein, encoded by the proteo-

glycan 4 (PRG4) gene, specifically synthesized by chondrocytes
located at the surface of articular cartilage [22–24]. As a lubricating
glycoprotein, lubricin is produced in synovial fluid [25], menisci
[25,26], the superficial layer of articular cartilage [27,28], tendons
[29], the temporomandibular joint disc [30,31] and the periodontal
ligament [32]. Also called superficial zone protein (SZP), lubricin
has been reported to be a proteoglycan, specifically PRG4. Lord
et al. demonstrated that lubricin in human synovial fluid is a
heterogeneous population with both glycoprotein and proteogly-
can forms [33]. PRG4 has been identified as megakaryocyte
stimulating factor (MSF); the expression of human and mouse
PRG4 genes was found to be similar and was found in cartilage and
also liver, heart, lung, and bone [34]. Ludwig et al. [35]
demonstrated lower levels of PRG4 and reduced boundary
lubrication properties in the synovial fluid of human patients
with symptomatic OA. In contrast, and perhaps unexpectedly, Neu
et al. [36] found elevated levels of SZP in patients with advanced
OA, so SZP may be ineffective in reducing joint friction in the
boundary lubrication mode in advanced OA, where other mecha-
nisms may dominate the observed tribological behaviour. Lubricin
contains multiple protein domains. The largest central mucin-like
domain (high content of proline, serine and threonine) consists of



Table 1
Target genes involved in OA. Molecular analyses involved use of the UCSF Chimera

package. Chimera is a graphics software developed by the Resource for

Biocomputing, Visualization, and Informatics at the University of California, San

Francisco (Petterson et al., 2004).

Chimera image Gene PBD code Name

CCL15 1U4L Chemokine (C-C motif)

ligand 15

CH13L1 4P8U Chitinase-3-like

protein 1

CHIT1 1GUV Chitotriosidasi

IL-1b 1TWM Interleukin-1 beta

IL-1bR 1F20H Interleukin-1 beta

receptor

IL-6 1ALU Interleukin-6

IL-18 1IL8 Interleukin-18

iNOS 1NS1 Nitric oxide

synthases

MMP1 3SH1 Matrix

metalloproteinase-1

MMP3 1B3D Matrix

metalloproteinase-3

MMP13 1CXV Matrix

metalloproteinase-13

TGFB1 3KFD Transforming growth

factor beta 1

TNF-a 1TNF Tumor necrosis

factor alpha

TNFR1 3ALP Cluster of

differentiation 120a

TNFR12 3ALQ Cluster of

differentiation 120b

VEGF 4KZM Vascular endothelial

growth factor

OA: osteoarthritis.
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imperfectly repeated sequences of EPATTPK, which provide the
scaffold for O-glycosylation [37]. This domain contains the
C-terminal haemopexin domain and 2 somatomedin domains at
the N-terminus. The boundary-lubricating ability of lubricin has
been attributed to its O-glycans, which affect physical properties
such as high viscosity and low friction [37]. Glycomic studies have
shown that lubricin presents abundant sialylated and unsialylated
core 1 oligosaccharides and several sialylated, fucosylated and
sulfated core 2 oligosaccharides [37].

3.2. Lubricin and OA

Lubricin is critical to normal joint function, providing boundary
lubrication of congruent articular surfaces under high contact
pressure and near-zero sliding speed. Furthermore, it has an
important role in preventing chondrocyte apoptosis and in
synovial cell adhesion and proliferation [38]. Lubricin-knockout
mice show clinical and radiologic signs of joint disease and
histologic abnormalities in their articulating joints with increasing
age. The most important features are synovial hyperplasia and
subintimal fibrosis, proteinaceous deposits on the cartilage
surface, irregular cartilage surface and endochondral growth
plates, and abnormal calcification in tendon sheaths and osteo-
phytes [39]. Furthermore, decreased synthesis of lubricin has been
observed in several studies of both OA joints and post-traumatic
OA [26]. In one study [40], joint friction and cellular apoptosis was
greater in lubricin-knockout than wild-type mice. The addition of
lubricin in the in vitro bovine explant cartilage-on-cartilage
bearing system significantly lowered the coefficient of friction
and chondrocyte apoptosis in superficial layers of cartilage,
thereby confirming its crucial role in preventing cartilage
degeneration [40]. Supplementing lubricin by intra-articular
injection improved weight bearing in studies measuring hind
limb force. Lubricin reduced the severity of post-traumatic OA and
level of urinary C-terminal cross-linked telopeptide type II collagen
(CTX-II), without affecting Osteoarthritis Research Society Inter-
national (OARSI) score [41]. Overproduction of lubricin in
transgenic mice reduced the severity of both age-related and
post-traumatic OA. This reduction was due to lubricin inhibiting
the expression of genes involved in cartilage catabolism and
chondrocyte hypertrophy by upregulating hypoxia-inducible
factor 3a (HIF-3a), a negative regulator of HIF-1a and HIF-2a,
responsible for catabolic and anabolic activity that promotes OA
[42]. The early stages after anterior cruciate ligament injury are
characterized by changes in levels of sulfated glycosaminoglycans
(sGAGs). The significantly increased sGAG and aquaporin levels in
synovial fluid after joint injury may indicate articular cartilage
damage [43]. Proteoglycan turnover may be increased with low
lubricin values because decreased levels have been consistently
associated with high sGAG concentrations [6]. Lubricin levels then
appear to recover within 1 year after injury [6]; even if once
cartilage tissue damage is initiated, it appears to persist over time.
These findings support that the initial reduction in lubricin
synthesis may initiate a cascade of events leading, over time, to
the onset of OA. However, this observation needs further studies to
support this hypothesis.

3.3. OA-related lubricin reduction mechanisms

The principal mechanism proposed for the reduction of lubricin
synthesis is the degradation activity of neutrophil-derived
enzymes and inflammatory mediators present in post-traumatic
SF [6]. Some cytokines (IL-1b, TNF-a and IL-6) are associated with
the upregulation of proteolytic enzymes such as procathepsin-B,
neutrophil elastase and MMPs, which degrade lubricin and lead to
loss of synovial fluid chondroprotection, especially in the early
stages after injury [6] (Fig. 3). The proteolytic activity seems to be
an important link between the inflammatory process and the
decreased synovial fluid lubricating ability, which suggests an
intimate correlation between these two pathological aspects of OA.
In the later stages of injury, other factors such as joint utilization
and loss of intra-articular surface congruence may contribute to
potentiating this damage. This notion may complicate an



Fig. 3. Schematic representation of the mechanism proposed for reduced lubricin synthesis in knee osteoarthritis (OA). The increased production of pro-inflammatory

cytokines (interleukin-1 beta [IL-1b], tumor necrosis factor alpha [TNF-a] and interleukin-6 [IL-6]) is associated with the upregulation of proteolytic enzymes (procathepsin-

B, neutrophil elastase and matrix metalloproteinases [MMPs]) that degrade lubricin and lead to loss of synovial fluid chondroprotection and the resulting onset of OA.
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understanding of the real sequence of catabolic events that occur
during OA onset [42].

The involvement of lubricin in OA disease and inflammation can
be identified by its glycosylation. One study [44] reported that
lubricin presents an altered glycosylation profile in OA samples, in
which decreased sialylation was observed. This phenomenon was
associated with decreased lubricating ability, due to the reduced
negative charge density on the surface of lubricin, given by the
disialylated structures. In fact, more acid residues may enhance the
lubricating ability of lubricin via the increased repellent charge
forces [45]. Moreover, approximately 50% of lubricin O-glycans
contain terminal galactose, a potential ligand for galectins.
Galectin-3 level was found increased in OA chondrocytes and
may be involved in the cartilage remodelling process [46]. Another
attractive glyco-epitope on lubricin is sialyl Lewisx, which
indicates the L-selectin binding ability. L-selectin has been found
involved in leukocyte trafficking. Lubricin can bind to polymor-
phonuclear granulocytes (PMNs) or neutrophils, which use
L-selectin to roll along the endothelium in the initial phase of
the adhesion cascade [47]. Furthermore, PMNs are recruited to the
inflamed synovial area, where they probably play an important
role in the cartilage degeneration, maintaining a coat of lubricin.
These findings imply a role of lubricin in PMN-mediated
inflammation in an L-selectin-dependent and independent manner
[48].

4. Therapeutic approaches for OA

4.1. Anticytokine therapy

The most evident approach in this field is represented by the
anticytokine therapy based on the fact that initiation and
progression of articular cartilage destruction primarily involve
pro-inflammatory and catabolic cytokines, especially IL-1b and
TNF-a [48]. Animal models of OA confirmed that IL-1b inhibition
by the IL-1 receptor antagonist (IL-1RA) showed reduced cartilage
destruction [49]. Experimental OA was also inhibited by IL-1RA

gene transfer, which results in the increased expression of IL-1RA
in the synovial membrane, thereby diminishing edema, pain and
radiological alterations in horses [50]. A human case report
described the successful treatment of inflammatory knee OA with
adalimumab, a TNF-a inhibitor, with significant reduction in
synovitis and synovial effusion and complete resolution of bone
marrow oedema [51]. In the study of rats, blocking TNF-a led to
increased total lubricin level in the joint, which suggests improved
chondroprotective ability. Early inhibition of TNF-a restored
lubricin in synovial fluid and on the surface of articular cartilage,
lowered the whole joint coefficient of friction and limited cartilage
damage [10]. Another approach is the use of antibodies against
nerve growth factor (NGF). NGF is a major mediator of
inflammatory and neuropathic pain, for a new therapeutic target
[52]. In a 2010 study, a phase II trial, tanezumab reduced pain and
stiffness in patients with knee OA [53]. Subsequently, a phase III
trial studied the efficacy and safety of this monoclonal antibody.
Other monoclonal antibodies against NGF have been developed
and 2, fulranumab and fasinumab, have been studied in terms of
OA. Inhibition of NGF by these antibodies reduced pain and
increased the function and well-being of patients with symptom-
atic OA. All 3 antibody preparations have reported efficacy,
although additional studies are required for fulranumab and
fasinumab to determine the optimal dose for clinical use and to
limit their adverse side effects [54]. Indeed, increasing doses of
anti-NGF antibodies has been associated with the syndrome of
rapid progression of OA, characterized by chondrolysis and bone
destruction [55]. Recently, the anti-inflammatory effect of pitui-
tary adenylate cyclase-activating polypeptide (PACAP), a neuro-
peptide with trophic effects, was assessed in OA rat models. PACAP
levels were decreased in OA cartilage and synovial fluid as
compared with controls. Moreover, in vitro, PACAP could prevent
IL-1b-induced chondrocyte apoptosis, which suggests its possible
therapeutic use in treatment of OA [56].
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4.2. Recombinant lubricin

Intra-articular recombinant lubricin supplementation has been
advocated as a potential new therapeutic modality for this
pathology [57,58]. In a rat model of OA, intra-articular injection
of a novel recombinant lubricin protein construct resulted in
effective binding to cartilage surfaces and facilitation of both
cartilage boundary lubrication and inhibition of synovial cell
adhesion, for significant chondroprotective effects during the
progression of OA [59]. The positive results of intra-articular
injection of recombinant lubricin have been confirmed by a rat
study of anterior cruciate ligament injury, showing reduced
cartilage damage and collagen type II degradation after treatment
[60,61]. In a recent study of ovariectomized rats, both early and late
recombinant lubricin treatment attenuated the onset of OA by
balancing the interplay between articular cartilage and subchon-
dral bone. The best results were shown with early treatment.
Specifically, recombinant lubricin treatment protected articular
cartilage against degeneration, as demonstrated by reduced
proteoglycan loss and OARSI score, less calcification cartilage
zone and reduced immunostaining for collagen X and MMP-13 but
increased expression of lubricin. Chondroprotective effects of
lubricin normalized bone remodelling in subchondral bone
underneath, which in turn attenuated the articular cartilage
erosion [62]. However, this therapeutic approach is often limited
by its short half-life. To remedy this problem and to ensure long-
term expression of PRG4 and chondroprotection in OA, the use of
intra-articular, helper-dependent adenoviral virus (HDV) gene
transfer delivering PRG4 was proposed recently [41]. The latter
showed protection against both post-traumatic and age-related
OA, without significant adverse effects on cartilage development.
Recently, a study evaluated the binding of recombinant human
PRG4 (rhPRG4) to CD44 receptor and its consequences on
cytokine-induced synoviocyte proliferation. PRG4 (lubricin) was
found a novel putative ligand for CD44 and may control
synoviocyte overgrowth in inflammatory arthropathies via a
CD44-mediated mechanism [63].

4.3. Physical activity

Physical activity covers not just sports but also simple everyday
movements such as housework, walking and playing. Regular
exercise has a great importance in maintaining good health,
balance, and posture; indeed, inactivity is a risk factor for different
chronic diseases [64,65]. Regular physical exercise is normally
suggested with non-communicable chronic disease (NCD) for its
specific effects in reducing cardiovascular risk factors and in anti-
inflammation, the principal component of many chronic diseases
[66]. In our recent study, we investigated a possible preventive
treatment for OA involving a combination of the Mediterranean
diet, based on consumption of olive oil, and mild physical activity.
The beneficial effects of extra-virgin olive oil have been widely
studied owing to its anti-inflammatory properties. Therefore, we
studied the role of a diet based on extra-virgin olive oil coupled
with moderate physical activity on inflammation and the
expression of lubricin in rat articular cartilage after induced OA.
The effects of injury greatly decreased the expression of lubricin
and increased that of IL-1 in rats; after the diet with extra-virgin
olive oil supplementation and physical activity, the levels returned
to normal as compared to controls [11]. Therefore, mild physical
activity may improve lubrication by promoting lubricin synthesis
and preventing cartilage degeneration in rats. These findings are
supported by our 2 previous studies showing that physical activity
increased joint mobility and lubricin expression, for enhanced
lubrication of articular surfaces in aged rats [67] and beneficial
effects of physical activity on the articular cartilage of rats with
glucocorticoid-induced osteoporosis [38]. In both studies, the
expression of lubricin was increased after moderate physical
activity. These findings are also supported by several other studies.
Ogawa et al. demonstrated that running induced maximal
expression of lubricin in the superficial zone of articular cartilage
in a COX-2-dependent manner, which underlies a positive effect of
mechanical motion on lubricin expression [68]. Furthermore, the
effect of mechanical factors on lubricin metabolism in vivo was
also reported by Ni et al. in aiming to understand alterations in
cartilage lubricin expression and immunolocalisation after tread-
mill treatment with different intensities in a rat model. The authors
observed a marked intensity-specific effect of running on lubricin
immunolocalisation and gene expression in cartilage, which was
inversely proportional to the Mankin score [69]. Elsaid et al.
evaluated the impact of forced joint exercise after acute joint injury
on lubricin metabolism, which decreased lubricin expression and
increased cartilage degeneration. The same study also aimed to
assess a single-dose of purified human lubricin injection in
exercised injured joints, which resulted in chondroprotection
and preserved superficial zone chondrocyte viability [70]. All these
results suggest that mechanical stimulation in the articular
cartilage could induce the expression of lubricin, which can
prevent cartilage degeneration and might be used to slow the
development of OA in joint tissues [71–73].

To conclude and to further underline the importance of physical
activity in the treatment of OA, we report some of the numerous on-
going clinical studies regarding this practice. Murphy et al. [74] are
examining the effectiveness of a tailored activity-pacing interven-
tion on fatigue, pain, and physical function in people with knee and
hip OA. The activity-pacing intervention was designed to help
people modulate their activity levels and reduce OA symptoms
associated with too much or too little physical activity. This trial will
determine whether activity-pacing is more effective than usual care
and whether fatigue and pain is ameliorated more with an
individually tailored than general activity-pacing approach. Another
recent on-going pilot randomized controlled trail of physical activity
is being carried out by Linda Li at the University of British Columbia.
The primary goal is to assess the feasibility and preliminary efficacy
of a multi-component intervention/model of care involving a group
education session, use of the Fitbit Flex (a wireless physical activity
tracking device), and weekly telephone counselling by a physio-
therapist to improve physical activity and reduce sedentary time in
patients with knee OA (ClinicalTrials.gov, NCT02313506).

5. Conclusions

Recent research has uncovered the multiplicity, complexity,
and multilevel nature of the inflammatory and degradative
processes that occur in OA. Increasingly, inflammatory mediators
are considered to participate in the onset and progression of OA. As
outlined in this paper, the studies reviewed support that the
development of this disease is closely related to inflammatory
processes, reduced levels of lubricin, and impaired lubricating
ability of synovial fluid. Several therapeutic approaches [75] aim to
solve, slow down or improve the joint condition after acute injury,
including anticytokine therapy, intra-articular supplementation of
recombinant lubricin and physical activity, which suggest new
horizons for the treatment of this complex disease. Future research
in this field should focus on the development of new therapies that
attenuate inflammation and stimulate lubricin production. This
approach may support joint tribology and synovial lubrication
leading to improved joint function and pain relief.
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