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• We determined the microbiological quality of particulate matter in an urban area.
• We found fungi and actinobacteria in low counts.
• 1/PM2.5 concentration was the main determinant of microbial concentrations.
• Negative correlation was found between O3 and PM2.5.
• Temperature had negative effect on microorganisms associated PM2.5.
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This study aims to determine the microbiological quality of particulate matter (PM) in an urban area in Jeddah,
Saudi Arabia, during December 2012 to April 2013. This was achieved by the determination of airborne bacteria,
fungi, and actinobacteria associated PM10 and PM2.5, as well as their relationships with gaseous pollutants, O3,
SO2 andNO2, andmeteorological factors (T°C, RH% andWs). Highvolume samplerswith PM10 and PM2.5 selective
sizes, and glass fiber filterswere used to collect PM10 and PM2.5, respectively. Thefilterswere suspended in buffer
phosphate and aliquots were spread plated onto the surfaces of trypticase soy agar, malt extract agar, and starch
casein agar media for counting of bacteria, fungi and actinobacteria-associated PM, respectively. PM10 and PM2.5

concentrations averaged 159.9 μg/m3 and 60 μg/m3, respectively, with the ratio of PM2.5/PM10 averaged ~0.4. The
concentrations of O3, SO2 and NO2 averaged 35.73 μg/m3, 38.1 μg/m3 and 52.5 μg/m3, respectively. Fungi and
actinobacteria associated PM were found in lower concentrations than bacteria. The sum of microbial loads
was higher in PM10 than PM2.5, however a significant correlation (r = 0.57, P ≤ 0.05) was found between
the sum of microbial loads associated PM10 and PM2.5. Aspergillus fumigatus and Aspergillus niger were the
common fungal types associated PM. Temperature significantly correlated with both PM10 (r = 0.44), and
PM2.5 (r = 0.5). Significant negative correlations were found between O3 and PM2.5 (r =−0.47), and between
SO2 with PM10 (r=−0.48).Wind speed positively correlatedwith airbornemicroorganisms associated PM. The
regressionmodel showed that the inverse PM2.5 concentration (1/PM2.5) was a significant determinant of fungal
count associated PM. Chemical processes and environmental factors could affect properties of PM and in turn its
biological quality.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Particles with both biological and non-biological origins are
transported togetherwith air currents in the atmosphere. Particles orig-
inate from various natural and anthropogenic sources, and affect visibil-
ity, climate, air quality, and human health (Fuzzi et al., 2006). Particle
.

ghts reserved.
concentrations are influenced by meteorological conditions, long-
range transport of pollutants, and new particle formation in the air
(Sippula et al., 2013). Particles are removed from the air either by sedi-
mentation or precipitation (Despres et al., 2012).

Biological particles/bioaerosols are particles of biological origin
suspended in the air such as: bacteria, fungi, viruses, microbial toxins,
proteins and enzymes (ACGIH, 1999). Such particles may be suspended
in the air either as individual organisms or attached to dust particles or
tiny droplets of water (Lighthart, 1997). Bioaerosols tend to attach in

http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2014.02.006&domain=pdf
http://dx.doi.org/10.1016/j.scitotenv.2014.02.006
mailto:abed196498@yahoo.com
http://dx.doi.org/10.1016/j.scitotenv.2014.02.006
http://www.sciencedirect.com/science/journal/00489697


110 M.A. Alghamdi et al. / Science of the Total Environment 479–480 (2014) 109–116
coarser PM fraction, however fungal spores, fragmented pollen, and
non-agglomerated bacteria are found in the fine fraction as well
(Meklin et al., 2002), due to themechanism of reaction between biolog-
ical agents and PM (Oikonen et al., 2003).

Biological particles have received less attention in the atmosphere
than other aerosol particles such as: sulfates, mineral dust and ash
(Friedlander, 2000), because its average concentrations have been
assumed to be insignificant compared to non-biological particles
(Penner et al., 2001; Kuhn and Ghannoum, 2003). Fungi accounted for
up to ~10% of organic carbon, and ~5% of PM10 at urban and suburban
locations (Bauer et al., 2008). In pristine tropical rainforest airborne fun-
gal spores accounted for up to ~45% of a coarse PM (Despres et al.,
2012). Biologicalmaterials above land constituted ~25% of the total par-
ticulate matter (Jones and Harrison, 2004).

Bioaerosols undergo daily and seasonal changes depending on envi-
ronmental factors, and human activities (Rossi et al., 2005). The survival
of airborne microorganisms may be affected by hydrocarbons, NO2 and
SO2 (Ho et al., 2005), and trace elements (Jackson et al., 1978). PM
bound with airborne pollen and fungal spores (Glikson et al., 1995)
could alter their biological and morphological characteristics. Physical,
chemical and biological compositions of suspended dust may be
changed depending on dust source, whether it originated from desert
or dried wetland (Soleimani et al., 2013). Smoke contains deleterious
compounds that may either kill microorganisms or modify their anti-
genic properties (Abdel Hameed, 2003). PM may change microbial dis-
persal pattern, and alter their aerodynamic diameters (Monn, 2001).

T°C, RH% and wind speed affect concentrations and viability of air-
borne microorganisms (Jones and Harrison, 2004). Climate change
could alter the timing and abundance of aeroallergens and the growth
and distribution of organisms that produce them (Burge and Rogers,
2000).

Less information is available onmicrobial community associated PM
in arid regions. However few studies have been directed to investigate
the factors affectingmicroorganisms associated non-biological particles
Fig. 1.Map of Jeddah with the sampling site marked w
and their health effects. A number of studies provide interesting infor-
mation pertinent to evaluate bioaerosols in contributing to health ef-
fects associated with exposures to ambient PM (Stevanovic and Nikic,
2006). Health responses may be enhanced when chemical and biologi-
cal constituents of particulate matter are combined together (USEPA,
2004).

The purposes of the present studywere to 1) gain information on the
microbial community associated PM10 and PM2.5, with particular focus
on fungi, and 2) determine relationships betweenmicrobial community
associated PMwith air pollutants (PM, O3, NO2, and SO2), andmeteoro-
logical parameters in an urban–arid region.

2. Materials and methods

2.1. The sampling site

Jeddah, 21.4869°N; 39.39.2517°E, is a costal city located in the west-
ern region of the Kingdom of Saudi Arabia on the Red Sea (Fig. 1).
Jeddah's climate iswarmandmoderate inwinter, and high temperature
and humidity in summer (Khodier et al., 2012), with spare or no rainfall.
Traffic, power stations, oil refinery and desalination plants are the main
sources of air pollution.

The sampling site was located at the King Abdulaziz University cam-
pus (a sensitive place). It is an urban area characterized by high traffic
density and barren with no vegetation or farmland. The air samplers
were positioned at a height of ~8 m above the ground on a rooftop of
the Faculty of Meteorology, Environment and Arid Land Agriculture
Building, during the period between December 2012 and April 2013.

2.2. Particulate matter sample collection

PM2.5 and PM10 samplers (Staplex Air Sampler Division, USA) oper-
ated at flow rate of 1.13 m3/min were used to collect PM2.5 and PM10.
The daily (10 AM–10 AM) PM2.5 and PM10 samples were collected on
ith a star. Map data ©Google, 2013 Terra Metrics.
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pre-weighed sterilized glass fiber filters, because glass fiber is robust
and inert. The samplers were sterilized with isopropyl alcohol before
each sampling set. PM10 and PM2.5 samplers were operated 2–4 times
per month (once per week). The mass concentrations of PM2.5 and
PM10 were calculated and expressed as microgram per cubic meter of
air (μg/m3).

2.3. Measurement of gaseous pollutants

Gaseous pollutants were continuously monitored using a UV-
absorption ozone analyzer (model 400E, Teledyne Technologies Com-
pany, San Diego) for ozone; a chemiluminescence NO/NO2/NOx analyz-
er (model 200E, Teledyne Technologies Company, San Diego) for NO2;
and a UV fluorescence analyzer (model M100E, Teledyne Technologies
Company, San Diego) for SO2. The detection limits of gas analyzers are
in the range of 0–10 ppm for O3, and 0–20 ppm for NO2 and SO2. The
gas analyzers provide update-readings every 1 min. These readings
were calculated over an hour and 24 h average. PM samplers were op-
erated in conjunction with gas analyzers. Quality control procedures
were performed every week, including inspection of the instruments
and zero/span checks.

2.4. Meteorological parameters

Temperature, relative humidity and wind speed were continuously
measured using Lufft WS600-UMB Compact weather station. Hourly
readings were averaged over a 24 h period (10 AM–10 AM). During
this study, temperature ranged within 24–33 °C with a mean value of
27.14 °C. Relative humidity ranged within 46–67% with a mean value
of 54.47%. Wind speed ranged between 1.38 and 6.21 m/s with a
mean value of 2.94 m/s (Table 1). The prevailing wind directions were
from west to north-west.

2.5. Microorganisms associated PM

Half of the glass fiber filters were suspended in 50 ml buffer phos-
phate solution containing 0.05% w/v Tween 80 (Sigma-Aldrich, USA)
and shaken for 30–60 min. Serial dilutions up to 10−3 were prepared.
Aliquots, 0.5 ml, of the original sample and its serial dilutions were
spread-plated, in triplicate, onto the surface of trypticase soy agar
supplemented with 50 ppm cycloheximide, malt extract agar supple-
mented with 50 ppm chloramphenicol, and starch casein agar media
(BD, Sparks, USA), for counting of bacteria, fungi and actinobacteria,
respectively.
Table 1
Concentrations of PM, gaseous pollutants (μg/m3), microorganisms associated PM (CFU/
m3), temperature (T°C), relative humidity (RH%), and wind speed (m/s) during the mea-
surement period.

Variable Parameter

Min Max Mean SD Median

PM10 (μg/m3) 61.23 216.3 159.94 56.67 147.25
PM2.5 (μg/m3) 13.61 211.4 60.03 42.36 50.0
Bacteria associated PM10 (CFU/m3) 100 591 248.3 155.3 220
Fungi associated PM10 (CFU/m3) 11.0 28.0 18.30 5.37 17.0
Actinobacteria associated PM10

(CFU/m3)
2.0 16.0 5.30 3.90 4.0

Bacteria associated PM2.5 (CFU/m3) 45.0 590 170 139.8 117
Fungi associated PM2.5 (CFU/m3) 4.0 15.0 9.21 2.01 10.0
Actinobacteria associated PM2.5

(CFU/m3)
1.0 5.0 2.76 1.13 3.0

O3 (μg/m3) 12.0 63.34 35.73 16.76 35.3
SO2 (μg/m3) 9.0 178.2 38.11 48.0 20.0
NO2 (μg/m3) 31.73 94.34 52.52 14.96 53.0
T°C 24.0 33.0 27.14 2.83 27.0
RH% 46.0 67.0 54.47 6.52 54.0
Wind speed (m/s) 1.38 6.21 2.94 1.02 2.77
Fungal and actinobacteria Petri plates were incubated at 28 °C for
5–7 and 7–15 days, respectively. Bacterial plates were incubated at
28 °C for 48 h. The growing colonies were counted and the mean
count was calculated, and concentration expressed as colony forming
units per cubic meter of air (CFU/m3).

Fungal isolates were purified and identified by direct observation on
the basis of micro- and macro-morphological features, reverse and sur-
face coloration of colonies on different media (Raper and Fennell, 1973;
Pitt, 1979; Barnett and Hunter, 1999; Klich, 2002).

2.6. Aerodynamic diameter (dae) of fungal spores

Physical diameter of fungal spores was measured by light microsco-
py (x= 400) using ocular “May Graticule”. It consists of a series of lines
and circles of graduated size set on a glass disc. The aerodynamic diam-
eter (dae)was calculated from the density (1 g/m3), shape (hypothetical
sphere) and physical diameter (Hinds, 1999).

2.7. Statistical analysis

Nonparametric Spearman's rank correlation test was used to
determine the relationships between concentrations of airborne
microorganisms-associated PM with air pollutant concentrations and
meteorological parameters. Nonparametric parameter method was
used because the data were not normally distributed. Multiple regres-
sion analysis was performed to explain the change of the dependent
variables (microorganisms) in relation to independent variables (air
pollutants andmeteorological parameters). Statistical analysis was per-
formed using SPSS 18 (PASW Statistics 18). P ≤ 0.05 was considered as
significant.

3. Results and discussion

3.1. PM

The 24 h of PM10 and PM2.5 concentrations ranged between 61.3 and
216.3 μg/m3 and between 13.6 and 211 μg/m3, respectively (Table 1).
The ratio of PM2.5/PM10was ~0.4. PM10 concentrations highly fluctuated
due to the contributions of the natural sources (windblown dust). PM10

and PM2.5 mass concentrations were significantly correlated (r = 0.92,
P ≤ 0.05). The highest PM concentrations were found in 15 March, and
the lowest in 14 December (Fig. 2).

Themean concentration of PM10 (159.9 μg/m3) and PM2.5 (60 μg/m3)
exceeded the European Union air quality limit values of 50 μg/m3 for
PM10, and 25 μg/m3 for PM2.5 (WHO, 2006). PM10 concentration
exceeded the US air quality standard of 150 μg/m3 and PM2.5 did not ex-
ceed the US-standard of 65 μg/m3 (USEPA, 2004). In spite of the mean
concentration of PM10 was below the Saudi Arabia limit value of
340 μg/m3 (PME, 2013) but it had a significant contribution to Jeddah's
air quality.

3.2. Gaseous pollutants

O3, SO2 and NO2 concentrations averaged 35.73 μg/m3, 38.11 μg/m3

and 52.52 μg/m3, respectively (Table 1). The daily mean concentrations
of O3, NO2 and SO2 are illustrated in Fig. 3. The highest O3 concentration
was found during spring (18 March), because tropospheric O3 is pro-
duced by the reaction of solar radiation on NOx. The lowest NO2 concen-
tration was found in 28 December and the highest in 26 February. NOx

emitted in cities reduces local O3 concentrations because NO reacts
with O3 to form NO2. This means that O3 precursors generated in coun-
tries with large traffic and industrial emissions may affect less polluted
countries (Geyh et al., 2000).

SO2 concentrations highly varied, i.e.: standard deviation exceeded
the mean value (Table 1). Higher concentrations of SO2 and NO2 in the
winter months are attributed to the increase in amount of consuming



Fig. 2. Daily mass concentrations of PM10 and PM2.5 during the period of study.
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fuels, stability of weather conditions, and formation of low inversion
layer (Afif et al., 2008). The daily SO2 mean concentration exceeds the
allowable limit value of 20 μg/m3 that was given by WHO (2006), but
did exceed the Saudi Arabia's limit value of 360 μg/m3 (PME, 2013).
The daily O3 and NO2 concentrations, respectively, were below the US
ambient air quality standard of 100 μg/m3 (USEPA, 2004), and Kuwait
limit value of 100 μg/m3 (Abdel Hameed, 2002). In the present study,
the gaseous pollutant mean concentrations were found to be similar/
or below those found in other countries. NO2 concentrations were
73 μg/m3 in Athens (Chaloulakou et al., 2008), and 22.27 μg/m3 in
Turkey (Özden et al., 2008). SO2 concentrations were 50 μg/m3 in
China (Chan and Yao, 2008), and 49 μg/m3 in Egypt (Abdel Hameed
et al., 2012).
3.3. Microorganisms associated PM

Table 1 shows themean concentrations of airborne culturable bacte-
ria, fungi and actinobacteria associated PM10 and PM2.5. The daily varia-
tions of microorganisms associated PM10 and PM2.5 are illustrated in
Figs. 4 and 5, respectively. Microorganisms associated PM concentra-
tions were low, because outdoor microbial sources such as: soil, plant
litter, phylloplane, composts, wastewater treatment plants, and animal
feces are rare (Bowers et al., 2011). Thehighest bacterial and fungal con-
centrations were found in February and January, respectively. The con-
centrations of bacteria associated PM (45–591 CFU/m3) were higher
than fungi (4–28 CFU/m3) and actinobacteria (1–16 CFU/m3). Non-
significant positive (r = 0.23) and negative (r = −0.2) correlations
Fig. 3. Daily mean concentrations of O3, SO
were found between bacterial and fungal concentrations associated
PM10 and PM2.5, respectively.

The sum of microorganisms loading PM10 was higher thanmicro-
organisms loading PM2.5 (Fig. 6). However a significant correlation
(r = 0.57, P ≤ 0.05) was found between airborne microorganisms
associated PM fractions, because particles may partially have the
same sources. The coarse particles often contain mineral species
from soil, and particles of biological origin (Layton and Beamer,
2009). However, fine particles contain soot, metals, secondary inor-
ganic components and a variety of organic compounds of both natu-
ral and anthropogenic origins (Sillanpää et al., 2005).

Bacteria associated PM concentrations were highly variable. This
may be attributed to the influence of anthropogenic activities and atmo-
spheric changes (Kellogg et al., 2004), and a large portion of bacteria
tend to be associatedwith dust particles (Lighthart, 1997). Airborne ter-
restrial and marine bacteria were mainly distributed in coarse particles
N7 μm (Li et al., 2011). The results in the present study correspond with
those detected by Chihara and Someya (1989) and Mouli et al. (2005)
who found airborne bacteria in the range of 1–32 CFU/m3 and
10–100 CFU/m3, respectively at semi-arid urban region.

The low concentrations of fungi and actinobacteria seem to be a
characteristic of the geographical area, i.e. the absence of biotic sources,
and arid and barren environments. Actinobacteria and fungi are ubiqui-
tous in soil and dust, and are known to be important air bio-pollutant in
occupational environments (Nielsen et al., 1997). In hot weather
conditions a significant decrease in airborne fungi was reported
(Fröhlich-Nowoisky et al., 2011). The mass contributions of Aspergillus/
Penicillium and Cladosporium were estimated at 0.17 ± 0.13% and 0.95
2 and NO2 during the period of study.



Fig. 4. Concentration of airborne microorganisms associated-PM10.
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± 1.63%, respectively of the total PM10 mass concentration (Adhikari
et al., 2006).

3.4. Identification of fungi-associated PM

Table 2 shows the numbers, percentages, frequency of occurrence,
and aerodynamic diameters of the identified fungi associated PM10 and
PM2.5. Aspergillus and Penicilliumwere the common fungal genera. Asper-
gillus and its telemorphic (Eurotium and Emericella) constituted 88.25%
and 72.12% of the total fungal counts associated PM2.5 and PM10, respec-
tively. The frequency of occurrence (number of isolation out of 21
samples) was categorized into 4 groups, 1) high occurrence fungi
(recorded 21–15 times out of 21 samples) represented by Aspergillus
fumigatus and Aspergillus niger in both PM fractions, 2) medium occur-
rence fungi (recorded 14–10 times out of 21 samples) represented by
Alternaria and sterial hyphae associated PM10, 3) low occurrence fungi
(recorded 9–5 times out of 21 samples) represented by Emericella,
Aspergillus ochraceus, Aspergillus sydowii, Epicoccum, and Fusarium,
depending on PM size fraction, and 4) rare occurrence fungi (recorded
4–1 times out of 21 samples) represented by: Trichoderma, Trichothecium,
Mucor, and Rhizopus depending on PM size fraction.

The aerodynamic diameters (dae) of the identified fungal spores
ranged between 2 and 14 μm. The aerodynamic diameter of the com-
mon fungi ranged between 1.7 and 3 μm (Table 2). The largest number
of fungal colonies was found at the size fraction with aerodynamic di-
ameter ranging between 2.1 and 3.3 μm, in aerobiological studies in
coastal areas (Li et al., 2011), these results correspondwith our findings.
Fig. 5. Concentration of airborne mi
3.5. The common fungal genera

Aspergillus, Alternaria, Penicillium, Rhizopus and Mucor were the
common fungal types, with higher concentrations associated PM10

(Table 3). Aspergillus averaged 7.9 CFU/m3 in PM2.5 and 13.1 CFU/m3

in PM10. Aspergillus positively (r = 0.26) and negatively (r = −0.28)
correlated with concentrations of PM10 and PM2.5, respectively.

The dominance of airborne Aspergillus, Penicillium, and Alternaria is
attributed to their ability to grow in various substrata in all regions
under different weather conditions, and high capacity to produce and
release high spore numbers into the air (Abdel Hameed et al., 2009;
Lima and Gadelha, 1983). Airborne Fusarium has been reported with
low incidence in many cities (0.015–0.3.1%) (Cavalo et al., 1980;
Takahashi, 1997). In this study the absence of Cladosporium is an indica-
tor of hotweather, and barren region, because it is sensitive to T°C (Pyrri
and Kapsanaki-Gotsi, 2007) and lives on dead herbaceous plants
(Cventic' and Pepeljnjak, 1997).

Aspergillus,Mucor, and Rhizopus can pose a threat to vulnerable indi-
viduals. Aspergillus is the common invasive mold infection worldwide
(Soleimani et al., 2013). The risk of aspergillosis increased when mean
concentration of Aspergillus was close to 0.9 CFU/m3 (Perdelli et al.,
2006). The allergens and microbial mediated respiratory diseases can
coincide with elevated microorganisms associated particles, as may be
enhanced when chemical and biological constituents of PM are com-
bined. The synergetic effect of microorganisms and PM can aggravate
respiratory allergy and other pulmonary diseases (Adhikari et al.,
2006). Dust, soot and hydrocarbons are found besides pollen grains
croorganisms associated-PM2.5.



Fig. 6. The sum of airborne microorganisms loading PM10 and PM2.5.
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and fungal spores and contributed to increase respiratory tract prob-
lems, either as agents that cause illness themselves (D'Amato et al.,
1994) or adjuvant effect that is provoked in people suffering from respi-
ratory allergies (Santra et al., 1991). The daily exposure to air pollution
may impair mucociliary clearance, depresses immune system, and in-
creases airway responsiveness to aeroallergens. Therefore people who
live in urban areas tend to become more affected by respiratory prob-
lems, at low aeroallergen concentrations, than those living in rural
areas (Abdel Hameed, 2003).

3.6. Correlations between microorganisms associated PM with air pollut-
ants and meteorological conditions

Table 4 shows the Spearman's correlation coefficients between mi-
croorganisms associated PM with air pollutants and meteorological pa-
rameters. Bacteria associated PM seemed to be independent from PM
mass concentrations. Positive and negative correlations were found be-
tween both O3 and NO2 with microorganisms associated PM2.5 and
PM10, respectively.

Ozone is known as a phototoxic oxidant (Tiedemann and Firsching,
2000). However, positive correlation was found between microorgan-
isms associated PM2.5 and O3. This can be attributed to low retention
Table 2
Identification of fungi types associated PM2.5 and PM10.

Type PM2.5

Number % Isolation out of 21 trials

Alternaria 10 2.62 8 (L)
Aspergillus 321 84.03 21 (H)
A. fumigatus 241 63.1 21 (H)
A. flavus 22 5.76 11 (L)
A. niger 44 11.52 17 (H)
A. ochraceus 2 0.52 01 (R)
A. sydowii – – –

Other Aspergillus 12 3.14 06 (L)
Emericella nidulans 12 3.14 05 (L)
Eurotium 4 1.05 06 (L)
Epicoccum – – –

Fusarium 1 0.26 01 (R)
Mucor 1 0.26 01 (R)
Penicillium 10 2.62 06 (L)
Rhizopus 4 1.05 03 (R)
Sterile hyphae 15 3.92 08 (L)
Trichoderma – – –

Trichothecium 2 0.52 02 (R)
Yeast 2 0.52 01 (R)
Total 382

H: 21–15; M: 14–10; L: 9–4; R: 3–1; – not detected; dae: aerodynamic diameter.
a Short axis.
time between O3 and PM2.5 to kill microorganisms or react with PM2.5

compounds, as PM2.5 mainly emitted from traffic activity or formed by
chemical reaction near the sampling site. We hypothesized that a con-
siderable amount of PM10 was transferred from other far sources and
microorganisms might have time (days) to be affected by O3.

Wind speed positively correlated with microorganisms associated
PM10 and PM2.5. Temperature showed significant positive correlations
withmass concentration of PM10 (r= 0.44) and PM2.5 (r= 0.5). Signif-
icant negative correlations were found between PM10 and SO2, and be-
tween PM2.5 and O3.

In this study microorganisms associated PM were regressed against
meteorological factors and air pollutants. The results of the multiple re-
gression analysis indicated that the main predication variable of fungi
associated PM was the inverse mass concentration of PM2.5 (1/PM2.5)
(P = 0.036).

The effects of air pollutants and meteorological factors on microor-
ganisms associated PM are complex. The low viable biological fraction
associated PMmay be attributed to many factors such as: PM composi-
tion, meteorological parameters, air pollution, physical and chemical
transformation, and geographical characteristics. PM2.5 may contain
toxic compounds which kill or affect microbial viability (Hood, 1973;
Handley and Webster, 1995). Toxic gases emitted by human activities
PM10 dae μm

Number % Isolation out of 21 trials

32 6.81 16 (H) 6–13a

308 65.53 21 (H) 1.7–4.5
96 20.42 21 (H) 1.7–2.2
59 12.55 17 (H) 3–4
96 20.42 20 (H) 2.6–3
11 2.34 7 (L) 3–3.5
6 1.28 5 (L) 2.6–3
40 8.51 18 (H) –

4 0.85 4 (L) 3.5–4.0
27 5.74 14 (M) 3.5–4.5
7 1.49 4 (L) 13–15a

7 1.49 6 (L) 2.2–3.6a

7 1.49 5 (L) 4.5–7
36 7.66 18 (H) 1.7–3.4
11 2.34 9 (L) 4–6
28 5.96 12 (M) –

3 0.64 3 (R) 3–3.5
– – – 8–10
– – – 4.0
470



Table 3
Concentration of the predominant fungal genera-associated PM2.5 and PM10.

Genus CFU/m3

PM2.5 PM10

Min Max Mean ± SD Min Max Mean ± SD

Aspergillus 3.4 15.48 7.89 ± 2.93 7.12 24.52 13.1 ± 4.88
Alternaria 0.0 1.74 0.34 ± 0.47 0 3.38 1.26 ± 0.99
Penicillium 0.0 1.74 0.38 ± 0.65 0.0 3.8 1.44 ± 0.96
Rhizopus 0.0 1.63 0.14 ± 0.39 0.0 1.69 0.55 ± 0.54
Mucor 0.0 1 0.046 ± 0.21 0 1.7 0.277 ± 0.53
Sterial hyphae 0 2.31 0.46 ± 0.73 0 3.68 1.1 ± 1.05
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reached levels conceivably deleterious to the survival of microorgan-
isms (Lighthart et al., 1971). Cadman et al. (1997) found fungi spores
in low counts during peak season of air pollution. Airborne bacterial
and fungal concentrations decreased with increasing PM concentration
(Raisi et al., 2010). PM had positive correlation with total fungi and As-
pergillus (Adhikari et al., 2006).

The positive correlation between fungi and RH% confirmed the im-
portance of humidity for release of fungi either by active or passive
modes. However RH% may cause clumping of biological and non-
biological particles, and consequently increases survivability of biologi-
cal particles or helps fast settling and removing of particles from the air.
Di Giorgio et al. (1996) found that various meteorological factors affect-
ed the type and concentration of airborne fungi, and relative humidity
had no significant effect on viable particles.

Interestingly, temperature had negative effect on microorganisms
associated PM2.5. This is because PM2.5 is mainly emitted from traffic ac-
tivity and containing hydrocarbons and other chemical compounds.
Temperature helps enhance chemical reaction on PM2.5 surfaces to
formmore toxic compounds. It is clear that temperature had more del-
eterious effect on microorganisms associated PM2.5 than ozone.

Wind speed positively correlated with microorganisms associated
PM, and negatively correlated with PM mass concentrations (Table 4).
Wind speed is a dilution factor (Lighthart and Kim, 1989), and there is
a direct relationship between wind speed and libration of spores
(Smith, 1966). The decay rate of airborne microorganisms increases as
the aerosol age increase, i.e. decrease of wind speed, because wind
speed helps transport of bioaerosols from source to the sampling site,
and at the same time it decreases the net concentration of aerosols
due to diffusion. Moreover aged particles have undergone physical
and chemical transformations in the atmosphere such as coagulation,
structural rearrangement, evaporation, adsorption and absorption
which may decrease or increase survivability of microorganisms.

It should be mentioned that, the main limitations in the present
study were: 1) low number of samples that may not be representative
or accurately reflect concentrations, 2) explanation regarding microor-
ganisms associated PM was mostly speculation and not supported by
Table 4
Spearman's correlation coefficients between airborne microorganisms associated PM with air p

Variable Variable

PM2.5 PM10 O3

Microorganisms associated PM2.5

Bacteria −0.10 0.15
Fungi 0.03 0.18
Actinobacteria 0.10 0.11

Microorganisms associated PM10

Bacteria −0.10 −0.03
Fungi 0.25 −0.16
Actinobacteria 0.11 −0.07

PM2.5 1 0.92 −0.47
PM10 1 −0.3

⁎ P ≤ 0.05.
other previously local measurements, and 3) sampling method was
considered as one limitation.

Regarding sampling method, the advantages and disadvantages of
different air sampling methods were previously discussed (Jensen
et al., 1994). Filtration (non-inertia) technique is inexpensive, simple,
and samples can be taken continuously for long period of time. Howev-
er filtration technique has three disadvantages: 1) dehydration effect is
caused by large volume of air passing overmicrobial particle, 2) difficul-
ty of removing deposited materials from the filters, and 3) inconsisten-
cy in recovery of microorganisms trapped in fibrous matrix. Finally in
aerobiological field, many studies have been conducted to determine
the relationships between biological particles with meteorological pa-
rameters, and air pollution. These studies are concerned with collecting
biological particles using samplers based on inertia forces and nutrient
media, and are not concerned with microorganisms associated PM,
using high volume samplers.
4. Conclusion

The concentrations ofmicroorganisms associated PMwere low,with
no significant correlations with PM mass concentrations. Fungi and
actinobacteria are typically autochthonous organisms and probably de-
rived from sources near the sampling area. Low numbers of fungi and
actinobacteria are indicators of the barren and arid environments. As-
pergilluswas the common fungal genera associated PM. Concentrations
ofmicroorganisms associated PMvaried under influence of the complex
dynamics of weather conditions and air pollutants. Temperature posi-
tively correlated with PM mass concentrations; O3 negatively affected
PM2.5 concentration, and SO2 negatively correlated with PM10 and
PM2.5. Wind speed helps survival of airborne microorganisms, and
helps dilution of PM. 1/PM2.5 concentrationwas the significant determi-
nant of fungal concentration. This study is a contribution to understand
airborne microorganisms associated PM and factors affecting their
survivability.
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