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UFPs. Numerous experimental studies have characterised UFPs in individual cities, but an integrated evaluation
of emissions and population exposure is still lacking. Our analysis suggests that the average exposure to outdoor
UFPs in Asian cities is about four-times larger than that in European cities but impacts on human health are large-
ly unknown. This article reviews some fundamental drivers of UFP emissions and dispersion, and highlights un-
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1. Introduction
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dimension to this already complex problem. UFPs differ from larger-
sized particles in their potential for lung deposition and translocation
to other parts of the body (HEI, 2013). There are suggestive hypotheses
that these particles may have a greater potential for adverse health
impacts compared with their larger counterparts (WHO, 2013). Long-
term exposure studies would be required to confirm these hypotheses,
but these are currently unavailable (Heal et al., 2012; HEI, 2013; Riickerl
et al.,, 2011). Because of their negligible mass compared with larger-
sized particles, UFPs are preferentially evaluated through measure-
ments of particle number concentration (PNC) (Harrison et al., 2000;
Kumar et al., 2010a). What makes them distinct from other pollutants
is their dynamic nature and it is this on-going transformation of
their physical and chemical properties, including number and size dis-
tributions, that contribute to substantial temporal (Sabaliauskas et al.,
2012) and spatial variability (Heal et al., 2012), which increases with
decreasing particle size (Birmili et al., 2013; Costabile et al., 2009).
Knowledge of this variability is the key in characterising human expo-
sure and designing monitoring strategies for both developed and devel-
oping cities.

The variability of ambient UFP concentrations depends on the
dispersion conditions governed by current wind speed and direction,
temperature inversions and the “breathability” of cities (Buccolieri
et al., 2010). The “breathability” depends on the urban morphology,
which dictates the exchange of polluted air within the urban canopy
layer (UCL, the lowest portion of the urban boundary layer, UBL,
extending to about twice the average building height) with the
cleaner air above. Densely packed high-rise buildings and diverse
meteorological conditions in cities play a key role in limiting this
air exchange and hence, the dispersion of UFPs, further elevating
their concentrations. Ever-growing numbers of on-road vehicles in
cities worldwide emit UFPs within the UCL, whilst other anthropo-
genic emission sources, such as power plants, usually emit them at
a higher level. Those emitted within the UCL spread laterally by dis-
persion and affect inhabitants downstream, whilst those released
from tall stacks can be re-entrained into the UCL through vertical
exchange. Combustion is, in general, a direct source of UFPs, but
also of precursors for secondary particle formation. The latter may occur
via photochemical processes and the condensation of semi-volatile
vapours (or very low volatility vapours produced in photochemical
reactions). Compared to new particle formation within the UCL, com-
bustion emissions to the higher level of the UBL efficiently lead to
new particle formation due to the smaller surface area of pre-existing
particles that results in much lower coagulation/condensation sinks
for nano-sized particles and vapours (Kulmala et al., 2000; O'Dowd
et al., 2002).

During the last decade, a number of experimental and numerical
studies have advanced understanding of the emission, formation, dis-
persion, exposure and health effects of UFPs. Most of these studies
were conducted in European cities (Kumar et al., 2013b), with only a
handful in emerging Asian cities where a majority of the world's
urban population resides (Kumar et al., 2013a). The primary reason
for such a lack of attention in Asian cities is their focus on complying
with regulations for criteria pollutants, the concentrations of which
often exceed the regulatory limits by orders of magnitude (Sharma
et al., 2013). Since there are no air quality regulations for UFPs, they
have not received due attention of regulatory authorities (Kumar
et al.,, 2011c¢). Taking advantage of existing knowledge, the focus of
this paper is on UFP emissions from road vehicles, a dominant source
that contributes up to 90% of total PNCs at busy roadsides (Kumar
et al,, 2010a). For the first time, we present a critical assessment of the
spatial variability in emission levels, concentrations and exposure, in
addition to discussing the impact of new particle formation on PNC in
arange of city environments. Discussion is then extended to present un-
resolved challenges that need to be tackled, together with regulatory
concerns and directions for future research to guide the sustainable
development of cities.

2. Particle number emissions across countries

The estimation of particle number (PN) emissions helps to assess
the contribution of various sources. In turn, this information is vital
to understand their overall impact on human health and environ-
ment, and thus, to design effective mitigation strategies. Knowledge
of PN emission factors for different types of vehicles and fuels under
varying driving conditions is an important input for such computa-
tions. Numerous research studies have reported emission factors
(Kumar et al., 2011b) that researchers have used to develop PN emis-
sion inventories. Consequently, consolidated emission factor data
bases (e.g. COPERT, PARTICULATES, TRANSPHORM) have also become
available for constructing PN emission inventories in Europe (Kumala
et al,, 2011; Paasonen et al.,, 2013; Reddington et al., 2011) and the UK
(AEA, 2010). Currently, most of the available emission factors are for
vehicle fleets of European cities. Outside the European Union (EU), PN
emission inventories are only available for Brisbane, Australia (Keogh
et al,, 2009) and Delhi, India (Kumar et al., 2011a). This clearly indicates
a major research gap and the need to quantify PN emission factors for
cities elsewhere in the world, so that local PN emission inventories can
be constructed and their impact on human health and global climate
assessed.

Particles smaller than 300 nm diameter contribute over 99% of total
PN emissions (Kumar et al., 2009a). Unlike the lower cut-off size, any
upper cut-off size over 300 nm does not influence PN estimates greatly.
By combining knowledge on the prevailing engine technology with the
amount of fuel consumption, Paasonen et al. (2013) compiled a PN
emission inventory for the 28 EU countries (EU28; see Section S1), cov-
ering the 3-1000 nm size range. Fig. 1 presents the PN emissions from
road traffic and other sources in EU28 for the year 2010, and their signif-
icant linear correlation with the countries' populations. According to the
study, road transport contributed over 60% of the total PN emissions,
followed by non-road transport (~19% to total PN emissions; including
national ship traffic) and domestic combustion (~13%). About 84% of
the total PN emissions were found to be within the UFP size band,
which is within the range of the percentages observed by individual
urban monitoring studies in London (Dall'Osto et al., 2011), Cambridge
(Kumar et al., 2008a), Brisbane (Mejia et al., 2008), Dresden (Birmili
et al,, 2013), Delhi (Monkkonen et al., 2005a) and Beijing (Wu et al.,
2008). In Europe, the contribution from road traffic varied from ~32%
of total PN emissions in Greece to ~97% in Luxemburg. France, Spain,
Germany, Italy, UK and Poland are the top six PN emitters in the EU28
and together, their road traffic contributes nearly 3/4 (~72%) of the
total traffic-induced PN emissions in the EU28.

Comparison of the annual PN emission estimates for Brisbane
(1.08 x 10%°) and Delhi (1.37 x 10%°) shows that emissions from traffic
alone were 1.4% and 1.8% of the EU28's traffic-derived PN emissions, re-
spectively, and this share increased to 5.0 and 6.3% when the top six PN
emitting countries were excluded from calculations. Interestingly, these
statistics change when per capita traffic-related PN emissions are esti-
mated for each European country and compared with each other, as
well as with a more densely populated megacity, Delhi (Fig. S1). Total
PN emissions from road traffic in Delhi were 79% higher than those in
Brisbane, but the trend for per capita emissions was the opposite,
being 559% higher in the latter than Delhi (Keogh et al., 2009; Kumar
et al,, 2011a). With the exception of France, none of the top six traffic-
related PN emitting countries remained on the list, which included
Luxemburg, Cyprus, Ireland, Austria, Portugal and France (Fig. S1). All
of the European countries emitted between 1.2 and 18.3 times more
than Delhi, with the exception of Romania, whose traffic-related per
capita PN emissions were ~0.67-fold lower.

In 2010, there were 21 cities worldwide with a population of at least
10 million or more (called megacities), ten of which were in Asian
countries (Kumar et al., 2013a). Delhi is one of these Asian megacities
and road traffic in Delhi alone contributed ~32-fold higher PN emissions
than Malta, the European country with the lowest PN emissions, and
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Fig. 1. (a) Three-dimensional bubble map showing total and road-traffic induced PN emissions in EU28 for 2010, (b) an enlarged version of parts of (a), (c) correlations between total and
traffic derived PN emissions in each of the EU28 countries during 2010 with their respective population, and (d) RPD values based on the annual transport emissions of PN in various
European countries, using Malta (with the smallest PN emissions) as the reference country. The details of estimating the RPD values can be seen in Section S2 and the explanation of
their variation between 0 and —200% is available in Section 2. The PN emission data is taken from Paasonen et al. (2013), as explained in Section S1. Each bubble represents one
European country and the size of each bubble corresponds to UFP (diameter less than 100 nm) emissions in that country, starting from the smallest bubble for Malta (6.24

x 10?3 yr=1) to the largest bubble for France (1.35 x 106 yr—1).

~11% of the traffic-related emissions in France, the country with the
largest PN emissions in Europe. Compared to Delhi, ten major Asian
megacities have similar or worse traffic emission conditions, as demon-
strated by recent health studies (Gurjar et al., 2010). Assuming that
daily per capita PN emissions from road traffic in these cities (Fig. S2)
are similar to those in Delhi (1.70 x 10'®) (Kumar et al., 2011a), their
road transport PN emissions are expected to be ~14% of those in the
whole EU28.

We derived the relative percentage differences (RPDs; Section S2)
for facilitating a good graphical and symmetrical representation, in
order to assess the variability in emissions between different countries
against a reference country, which was chosen to be Malta (Fig. S3).
The RPD is calculated by dividing the absolute difference between the
two values (i.e. difference between the reference category and each
category in the classifying variable) by the average of the same two
values, and then multiplying the resulting values by 100 (as detailed
in Section S2). Numeric values for the RPD can therefore vary between
—200 and +200%; although not directly applicable to the present
case, a value within + 30% is generally considered as acceptable from
the air quality modelling perspective. In this case, the lowest annual
PN emissions for Malta are used as a reference value that gives a nega-
tive value of the numerator term in Eq. (S1) and therefore the values
of the RPD vary between 0 and — 200%. As expected, reasonably large
RPD values of —199% were obtained, which did not change much
(—193%) after excluding the six highest PN emitting countries.

However, these six countries, which also had the highest RPD values,
showed very little variability, ranging from — 198% to — 199%. These
values were closely followed by Delhi (—188%) and Brisbane
(—185%). Such variability was expected, given that PN emissions are
the result of many diverse factors, such as the number and type of vehi-
cles, fuel quality, travel behaviour and the distance travelled by each ve-
hicle, as discussed in Section 3.

3. Spatial variability of UFP concentrations across cities

Ambient particle mass concentrations (PMCs) are usually dominat-
ed by particles above 100 nm. In the absence of strong local sources,
PMCs show only minor spatial variability within a city environment
(Birmili et al., 2013). However, the spatial inhomogeneity of UFPs re-
mains a key challenge for the assessment and control of these particles.
This inhomogeneity is generally largest close to roadsides and is largely
due to high PNCs in the UFP size range. This is reflected by multiple-site
intra-city PNC monitoring studies, which show up to an order of magni-
tude difference with respect to minimum average PNCs. For instance,
spatial differences in average PNCs between sites within a city were
found to vary from a factor of ~2 in Cassino, Italy (Buonanno et al.,
2011a) and Antwerp, Belgium (Mishra et al., 2012) up to ~8 in Brisbane,
Australia (Mejia et al., 2008) and ~9 in Dresden, Germany (Birmili et al.,
2013). Mobile measurements of the UFPs, generally carried out for the
assessment of personal exposure, also reveal a marked spatial variability
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in the UFP concentrations at different locations within busy areas of
cities. For instance, results of the DAPPLE (Dispersion of Air Pollution
and Penetration into the Local Environment) experiments highlighted
a noticeable difference (33,162-163,110 cm™3) in the minimum and
maximum exposure concentrations of UFPs between the kerbside and
building side locations in central London (Kaur et al., 2005). As also
shown by other studies (Fujitani et al., 2012; Pirjola et al., 2006; Zhu
etal., 2002), the findings of the DAPPLE experiments indicated a striking
decline in UFP concentrations with increasing distance away
from the road, besides showing over a factor of ~4 variation
(29,951-131,415 cm™23) in the minimum and maximum UFP con-
centrations present during the measurements in the different modes
of transport (Kaur et al., 2006). In fact, a summary of many such recent
studies suggests that mean UFP concentrations can range by an order of
magnitude, with the lowest and the highest UFP concentrations of
~34,000 + 18,000 cm™3 and ~300,000 + 260,000 cm 3 experienced
during cycling and in automobiles during tunnel travel in the range, re-
spectively (Knibbs et al., 2011).

As for PNC variability across the cities, we analysed the PNC data
measured over 40 different roadside locations in numerous cities within
and outside Europe (Fig. 2). The RPD values were derived against
London as a reference site and showed large overall variability in the
range — 172% to 102% (Fig. 3a). In absolute terms, cross-comparison of
average PNC data suggests large differences, although these variations

are smallest for European cities compared with Asian or US cities. In
fact, the data suggested a difference of ~6 and ~19 times between the
average PNCs within the EU and Asian cities, respectively. These differ-
ences increased up to ~26-fold between Asian (Delhi; with the largest
PNCs) and European (Essen; the smallest PNCs) cities. It is worth noting
that short-term (1 s average) peak PNCs over few tens of seconds have
been found to be over an order of magnitude larger compared with
long-term (hourly) averages along the roadsides (Kumar et al.,
2008Db). This means that the differences in PNCs can further increase if
peak concentrations are taken into consideration, suggesting further
challenges for relevant regulatory designs.

This large spatial variability is a product of numerous factors affect-
ing the emission and dispersion. Some of this variability is due to differ-
ences in experimental methods. The lower cut-off size for the PNC
measurement, for example, varied between 3 and 25 nm in numerous
studies, as seen in Table S1 and this can account for up to ~35% of the
total PNCs in roadside environments (Kumar et al., 2009a). Distance of
the measurement location away from the road is another consideration.
For the unobstructed topographic settings, studies have found an expo-
nential decay in PNCs with perpendicular distance away from the road,
meaning that PNC levels can decrease by up to ~40% of their kerbside
level within a distance of 10 m (Fujitani et al., 2012; Zhu et al., 2002).
Some of the spatial variations may be caused by seasonal (e.g. temper-
ature inversion) effects that have been found to significantly increase
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Fig. 2. Typical measured PNC levels at the roadside in 42 different cities. Details of the source studies are presented in Table S1.
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Fig. 3. RPD values for the (a) roadside PNCs in various cities, using PNC values for London as a reference, and (b) exposure to roadside PNCs recorded at various city locations, using the
exposure for London as a reference. The size of each bubble is based on the PNC/exposure at each location, and the flags represent the country in which each city is located, as noted in

Table S1.

the PNCs during cold months (Buonanno et al., 2013). The average PNCs
have generally been found up to ~300% higher during winter compared
with summer under identical traffic emission conditions (Fujitani et al.,
2012; Pirjola et al.,, 2006; Sabaliauskas et al., 2012). In summary, nearly
400% of variability can be expected among the PNC values presented in
Table S1, based on the above factors alone. The rest of the observed var-
iability can be attributed to other local factors including traffic volume,
fuel type, urban morphology, climate, dispersion conditions specific
to individual sampling locations, and uncertainty in the measured
data due to manual (e.g. data collection and handling) and mechanical
(e.g. instrument calibration) errors, which are difficult to generalise.

The overall levels as well as inter-city differences in PNC notably de-
creased when restricting the analysis to European data. The EU is cur-
rently the only region worldwide where PN emission standards for
vehicles are in place (EC, 2008). Euro 5 and Euro 6 standards have set
a PN emission limit of 6.0 x 10'! solid particles per km for compression
ignition diesel vehicles (EC, 2008). Euro 6 standard also places a similar
limit (6.0 x 10! solid particles per km) for direct injection gasoline ve-
hicles, which is however exempted to 6.0 x 10'? solid particles per km
for the first three years of its implementation date in September 2014
(EC, 2008). It is worth noting that two types of particles are present
in vehicle exhaust - the semi-volatile nucleated particles and the
larger particles with a graphitic core (Harrison et al., 2011) - but the
Euro 5/6 emission limitation refers to non-volatile particles that are
larger than 23 nm after heating at 300 °C.

Both gasoline (petrol) and diesel engines emit UFPs, but diesel en-
gines are considered to be more important because of substantially
higher emission factors (number emitted per vehicle-km) (Beddows
and Harrison, 2008). Whilst relatively little work has been conducted
into the detailed characterisation of UFP from gasoline engines, the
major difference in the case of conventional (port injection) engines
appears to be a much lower concentration of solid soot-mode carbona-
ceous particles relative to the smaller semi-volatile nucleation particles
deriving from condensation of high molecular weight hydrocarbon
material derived mainly from unburned engine oil (Eastwood, 2008;
Harris and Maricq, 2001). In the case of the less common gasoline direct
injection engine, UFP emissions are much more similar to those from a
diesel engine. The semi-volatile compounds within the nucleation
mode particles tend to evaporate as the particles disperse away from
the point of emission and concentrations of vapour are reduced. On a
timescale of tens of minutes, it has been suggested that the particles
can reduce in diameter by a factor of more than two (Dall'Osto et al.,
2011).

Relatively high PNCs, and hence high RPD values, were seen for
Asian cities (Fig. 3). These indicate relatively higher levels of sulphur
in diesel fuel promoting sulphuric acid induced nucleation (Kulmala

et al.,, 2004), use of inferior vehicle technology (Liu et al., 2013) and
densely built environments adversely affecting the dispersion of UFPs
(Kumar et al., 2013a).

4. UFP exposure across cities

Knowledge of inhalation dosimetry is important to establish links
between exposure and health effects. Exposure to high PNCs is known
to aggravate existing disease, due to the efficient alveolar deposition
of nano-sized particles and their potential to enter the pulmonary vas-
cular space (Shah et al., 2008). The extent of respiratory deposition
(i.e. the sum of alveolar, tracheobronchial and extrathoracic regions) is
dominated by the number of sub-100 nm particles. For instance, the re-
spiratory deposited fraction decreases in power form, from ~91% for
5 nm particles to ~63% for 30 nm, ~23% for 100 nm and only ~13% for
300 nm particles (ICRP, 1994). This clearly suggests that the knowledge
of particle size distributions, which can change dramatically in urban
environments (Dall'Osto et al., 2011), is important for the accurate esti-
mation of dose rates.

The strong size-dependence of deposition implies that the exposure
is not directly proportional to PNC, despite total PNC being identical at
different locations. We have demonstrated this by calculating the aver-
age roadside PNCs for Asian and European environments, which shows
a ratio of ~3.7 (Fig. 2). Respiratory deposition rates are computed by
using the methodology presented in Section S3, where we assumed
the typical size distribution in Delhi (Monkkonen et al., 2005a) and
Cambridge (Kumar et al., 2008b) as representative of Asian and
European cities, respectively. The respective average dose rates come
out at ~7.20 x 10'° and 3.12 x 10'° particles per hour, which have a
ratio of ~2.3 compared with ~3.7 for the average PNCs. This reduction
is mainly due to the large percentage of particles in the nucleation
mode (<30 nm) in European cities compared with dominance of accu-
mulation mode particles (~30-300 nm) in Asian cities. These exposures
are, of course, sensitive to the selected size distributions, but represent
typical examples to demonstrate the significance of knowledge of size
distributions.

In order to assess the relative differences in exposure between indi-
vidual cities, we moved from a continental to a city scale by assuming a
fixed deposition fraction of 0.41 for Asian and 0.66 for European and
other cities (Section S3), the latter being identical to that used by
urban exposure assessment studies in European city environments
(Int Panis et al., 2010). The RPD values for exposure, using London as a
reference, varied between + 102% and — 157% for the whole dataset
(Fig. 3b). In absolute terms, as expected from the PNCs, differences be-
tween the average exposure within the European and Asian cities
were found to be ~6 and ~19 times, respectively (Fig. 3b). These
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differences were up to ~15 fold between Asian (Delhi; with the largest
rates) and European (Essen; the smallest rates) cities. It is worth noting
that these estimates are based on long-term average PNCs and the
consideration of short-term average PNCs might further increase these
differences. Furthermore, the spatial representativeness of exposure in
individual cities will be greatly affected by their spread and land use.
For instance, cities with a larger area but less built land cover (e.g. Bris-
bane compared to Delhi, where ~21% of land area is covered by
~1749 km road length per 100 km? (Kumar et al,, 2011a)) will provide
larger spacing for emissions to disperse before they reach human recep-
tors and hence, relatively lower exposure.

Although indoor and transport micro-environments are not the
focus of this article, consideration of UFP exposure in these environ-
ments is equally important for the assessment of daily exposure doses
of the UFPs for urban dwellers. For non-smoking type indoor environ-
ments in the USA, studies have noted relative contribution to the typical
24-h daily exposures in the outdoor, indoor and in-vehicle environ-
ments as 36,47 and 17%, respectively (Wallace and Ott, 2011). This con-
tribution was doubled for indoor (77%), nearly halved for outdoor (17%)
and became one-third for in-vehicle (6%) for the smoking indoor envi-
ronments (Wallace and Ott, 2011). The exposure contribution from
outdoor sources is expected to decrease in rural areas and increase in
polluted urban areas due to a greater density of road vehicles. For exam-
ple, the above figures for the non-smoking case were found to be re-
versed in a Los Angles based study, where ~46, 36 and 18% of total
UFP exposure was found to occur in outdoor, in-vehicle and indoor en-
vironments, respectively (Fruin et al., 2008). In terms of comparison of
the daily overall exposure doses in the European and Australian popula-
tion, recent studies suggest that the Italian population experiences sig-
nificantly higher daily UFP exposure doses than the Australian
population, mainly because of the much higher level of PNC exposure
during eating, cooking and transportation activities (Buonanno et al.,
2011b; Buonanno et al., 2012b).

Recent estimates of the mortality burden based on long-term expo-
sure to PM; 5 mass concentrations suggest an average loss of 7-8 months
in life expectancy for UK residents and about £20 billion per year equiva-
lent health costs (Defra, 2008). An equivalent estimate for PN exposure is
unavailable and hence, the contribution of UFPs to these effects is unclear.
However, time-series epidemiological studies show that particle number
and mass metrics are predictive of different health outcomes (Atkinson
et al., 2010) and the PMCs do not describe well the exposure to UFPs
(Harrison et al.,, 2010).

Some preliminary estimates can be made using only the mortality
estimates available for Delhi (Kumar et al., 2011a), showing about
1900 deaths per million due to traffic-related PN exposure in 2010. Sim-
ilar or worse air pollution conditions can be expected in Asia (Gurjar
et al,, 2010) and assuming similar mortality rates in Asian megacities
to those in Delhi, rough estimates suggest ~0.31 million deaths per year.

5. Role of new particle formation events on PNCs in developing and
developed cities

Formation of new nano-sized particles within and above the UCL
is significant, but it varies from city to city in terms of frequency and
its potential to increase PNCs. For example, in some heavily polluted
urban areas like Mexico City or Chinese megacities, it occurs on
almost ~50% of days whereas in other cities, the frequency is less than
10% (Kuang et al., 2008; Wu et al., 2007). Less polluted environments
are prone to significant secondary formation where the condensation of
photochemically-formed low volatility vapours leads to condensational
growth and sulphuric-acid induced nucleation (Holmes, 2007). Specific
meteorological conditions, including intense solar radiation, low
wind speed, and low relative humidity favour secondary formation
(Rimnacova et al., 2011). On the other hand, there is always a conden-
sation sink in the form of the surface of pre-existing solid particles,
which are usually higher in polluted environments, to inhibit secondary

formation. The integrated effects of new particle formation and the con-
densation sink determine the net rate of new particle formation in
urban areas. As a result, the formation rate of 3 nm particles within
the UBL and urban areas can be in the range of 0.01-10 and up to 100
particles cm 3 s~ !, respectively, with a typical particle growth rate in
the range of 1-25 nm h~!, which is usually much higher during
summer than winter (Kulmala et al., 2004). The following examples
demonstrate the importance of secondary formation in influencing
the PNC in developed and developing cities.

The formation rate of 3 nm particles from the observed events varied
from 3.3 to 13.9 cm™> s~ ! in Delhi, with the growth rate varying from
11.6 to 18.1 nm h~' (Monkkonen et al., 2005a). Given the very high
background particle loading in Delhi's atmosphere (Fig. 2), larger con-
densation sinks causing more effective suppression of the nucleation
process are expected. In the case of another megacity, Beijing, recent
studies suggest that the annual average PNCs of nucleation mode
(3-20 nm), Aitken mode (20-100 nm), and accumulation mode
(0.1-1 um) particles in ambient air were 9000 cm™2, 15,900 cm ™2,
and 7800 cm 3, respectively (Wu et al., 2008). These PNCs are generally
higher than those in the cities of developed countries, especially for
accumulation mode particles (Dall'Osto et al., 2011). The higher concen-
tration of accumulation mode particles results in a higher condensation
sink for precursor vapours for new particle formation and, together with
strong scavenging of newly formed nanoparticles, this hinders the
occurrence of observed new particle formation events. Nevertheless, a
high frequency (~40%) of nucleation events was unexpectedly observed
in the urban areas of Beijing (Wu et al.,, 2007). Especially in spring, fre-
quent new particle formation events led to both the highest total PNC
and the lowest volume concentration compared to other seasons (Wu
et al., 2008). Long-term measurements showed that the range of forma-
tion rate spanned from 3.3 to 81.4 cm™ > s~ ! and the growth rate varied
from 0.1 to 11.2 nm h™'. Meanwhile, simultaneous nucleation events
were found at both urban and regional background sites, indicating
that this is a regional phenomenon in the Beijing area (Wang et al.,
2013). This means that a rapid growth of newly formed particles signif-
icantly contributed to the nucleation mode and Aitken mode over a
large area.

In terms of European cities, a systematic study in Birmingham found
new particle formation to be infrequent but not insignificant (Alam
et al.,, 2003; Shi et al., 2001). For instance, nucleation events were ob-
served on ~5% of monitoring days, with typical growth rates of around
4 nm h-1 for particles between 10 and 30 nm (Alam et al., 2003).
Ketzel et al. (2004) reported that total PNCs in Copenhagen increased
by up to 5-10 times within a few hours, for clean air and high solar ra-
diation conditions. They also observed particle growth rates in the
1-6 nm h™! range, which were similar to those found at another
European suburban background location in Prague, where the average
value of particle growth rate was found to be ~54 nm h™!
(Rimnacova et al., 2011). Reche et al. (2011) recently demonstrated nu-
cleation as a significant process influencing PNC levels throughout
southern Europe. They observed that the occurrence of SO, peaks may
also contribute to the occurrence of midday nucleation bursts in specific
industrial or shipping-influenced areas, although at several central
European sites similar levels of SO, were recorded without leading to
nucleation episodes. This allowed the authors to conclude that the nu-
cleation variability in different European urban environments was not
influenced to the same degree by the same emission sources and atmo-
spheric processes. Studies have also found nucleation to be a dominant
process in North America. Stanier et al. (2004 ) found regional-scale new
particle formation of UFPs to occur on 30% of the study days in Pitts-
burgh. The intensity of events differed, sometimes leading to an increase
in PNC between 50,000 cm ™ up to 150,000 cm™>.

As explained above, regional nucleation processes are favoured by
high gas-phase precursor concentrations (especially sulphur dioxide,
but also oxidisable organic compounds), but disfavoured by a high
pre-existing particle surface area that provides a condensation sink for
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vapours of low volatility. Since the atmospheres of less developed coun-
tries typically show both attributes, it is difficult to predict the likelihood
of nucleation frequently influencing PNC. However, the European study
of Reche et al. (2011) shows the importance of climate, with southern
European cities showing a much greater influence of nucleation pro-
cesses than those in northern Europe. This suggests that the high sun-
shine levels in many cities in the developing world may be a key
influence in promoting atmospheric oxidation processes to the extent
that they overwhelm the condensation sink hence leading to frequent
observations of nucleation in many such cities despite high pre-
existing particle concentrations.

It is apparent that the condensation sink may be too great in many of
the developing Asian cities, due to high particle loadings, to allow much
particle formation by these mechanisms, but it is certainly an important
mechanism. However, in-depth assessments of long-term continuous
observations are needed in order to clarify and quantify the role of re-
gional new particle formation events in affecting PNCs in urban areas.
One of the difficulties in performing such quantification is that both “nu-
cleation particles in ambient air” and “nucleation particles in the ex-
haust plume” tend to exhibit similar size distributions. Most of the
studies performed to date have focused on identifying the events with
“strong new particle formation rates” (so-called “nucleation events”)
in rural areas or downwind of urban emissions (Hamed et al., 2007;
Qian et al., 2007; Stanier et al., 2004). However, attempts to quantify
day-to-day contributions of the “new particle formation processes” to
total urban PNC have not been made.

6. Unresolved challenges

With recent advances in instrumentation and measurement tech-
nology, it is now possible to measure atmospheric particles down to
1 nm (Kulmala et al.,, 2013). The first PN emission inventory in Europe
has recently become available, indicating emission levels in European
countries (Kumala et al., 2011; Paasonen et al., 2013). The scientific un-
derstanding of their measurement, atmospheric formation, dispersion,
physical and chemical transformation, environmental and health
impacts has improved appreciably over the past decade. However, nu-
merous unresolved technical and practical constraints remain for
enforcing any nationwide regulatory framework. For instance, safe
levels of PN exposure and the biological mechanisms through which
they affect human health are still contentious (HEI, 2013; Peters et al.,
1997). A number of instruments are available for these measurements,
but due to: (i) their lack of robustness for long-term unattended
operation, (ii) high cost for field deployment in sufficient numbers,
and (iii) the limited reproducibility of data by different instruments,
standard methods to measure airborne UFPs are yet needed to allow
scientists to reach a clear consensus (Kumar et al., 2011c¢). Nucleation
mode particles below 30 nm bring additional uncertainty, since these
are semi-volatile and form through gas-to-particle conversion (Kulmala
et al., 2004), but can contribute up to 40% of total particles by number
along busy roadsides (Kumar et al,, 2011c). The nucleation rate (i.e. the
intensity of gas-to-particle conversion), which partly controls the nucle-
ation mode concentration, is also dependent on temperature. Therefore,
similar emissions of precursor vapours for nucleation (e.g. SO,, some
VOCs) may lead to very different concentrations of UFP in different atmo-
spheric conditions. The volatile nature of the nucleation mode particles
raises issues in relation to their reliable measurement and remarkable
spatio-temporal variability after emission into the atmospheric environ-
ment (Dall'Osto et al,, 2011).

Densely and unevenly built-up city environments, together with the
rapid transformation processes affecting UFPs, further complicate this
issue. For instance, the exchange of air inside the urban canopy with
the cleaner air above is greatly influenced by the built environment of
an individual city (Buccolieri et al., 2010). This contributes to both tem-
poral variability and spatial variability in the concentration of UFPs,
which exceeds an order of magnitude within metres of the source,

and reduces by several orders of magnitude within seconds, especially
immediately after emission (Carpentieri and Kumar, 2011; Kumar
et al., 2009b; Morawska et al., 2009). Dispersion of UFP emissions
away from the source depends on synoptic wind conditions, atmo-
spheric stability and the density of the built environment. These, togeth-
er with the quantity of UFPs emitted at a particular location, play a
major role in dictating their concentrations and human exposure. In
the EU, PN emissions of solid particles (excluding particles formed in
nucleation process) from diesel vehicles are currently regulated
through the Euro-5 and Euro-6 vehicle standards (EC, 2008). To meet
these standards, the EU undertook widespread deployment of diesel
particulate filters (DPFs), in addition to fuel quality improvements in
the form of reduced sulphur content. Together, these led to a decrease
in UFP levels in European and North American environments, with ob-
servational studies in London (Jones et al., 2012), Copenhagen (Wahlin,
2009), Toronto (Sabaliauskas et al., 2012) and Los Angeles (Choi et al.,
2013; Quiros et al., 2013) supporting this conclusion. However, the
case of growing cities elsewhere is different and such actions have yet
to find a place in local regulatory planning. Therefore, the concentration
levels in Asian cities, for example, are many times higher than those
observed in Europe (Fig. 2), as are fuel sulphur concentrations.

Another interesting challenge is emerging due to the widespread
deployment of after-treatment systems, such as DPFs, which reduce
the soot emissions efficiently. This leads to a lower solid particle surface
area available for condensation of gaseous compounds and triggers par-
ticle formation through the nucleation. Consequently, DPFs can lead to
an increase in PNC, especially when sulphur content is high (Liu et al.,
2013), unless the sulphur content in fuels is brought to a minimum
level to restrict sulphur-driven nucleation processes. Whilst the sulphur
content in fuel varies from below 50 to over 2000 ppm in Asian cities
such as in China (Liu et al., 2013) and India (Kumar et al., 2013a), this
concentration is much lower in European cities such as in London
(<10 ppm) (Jones et al., 2012). This clearly indicates that reductions
in sulphur content are key for further reducing PN formation and
human exposure by improving air quality in city environments.

An additional option available to urban governments is controlling
exposure to UFPs by separating urban residents from high-emission
sources. Kumar et al. (2011a) estimated that in 2010 heavy-duty vehi-
cles in Delhi contributed ~4% of vehicle kilometres travelled, but ~65%
of PN emissions. Using simple box models, the authors estimated
PNCs for roadside areas, ~327,000 cm~>, and the city as a whole,
~33,000 cm 3. The factor of 10 dilution points to large spatial variations
in cities and suggests that efforts could be made to quantify the varia-
tion of PNC with distance from road sources and based on this, to sepa-
rate heavy-duty vehicles from areas where people spend a significant
amount of time.

Altogether, these unresolved challenges pose difficulties to national
governments worldwide to assess what they can do to improve the
urban environment, including fuel substitution, tighter emission stan-
dards, location of housing relative to major roads, or the location and
the type of industry.

7. The future directions

European cities are currently well placed to make reliable estimates
of PN emissions, because of richly available information on vehicle spe-
cific emission factors and vehicle fleet inventories (see Section 2). The
major challenge remains for Asian cities, which have demonstrably
high PN emissions but lack data on UFP emissions. Developing city-
specific emission factors for Asian vehicle fleets is a necessary step to
construct accurate emission inventories and assess health impacts on
the residents of emerging cities.

The UN-ECE Particle Measurement Programme helped establish
new systems and protocols for assessing PN emissions from vehicles
in Europe (EC, 2008). As a result, mass and number emissions from
modern diesel and gasoline direct ignition engines have greatly
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reduced. However, the effects of alternative fuels, such as biofuels, on
UFP emissions are yet to be understood. Evidence suggests that particu-
late mass emissions from biodiesel fuelled vehicles have substantially
decreased in recent years, but this is likely at the expense of an up to
two orders of magnitude increase in PN emissions (Kumar et al.,
2010b), mainly due to the reduced number of solid particles in emis-
sions, leading to a considerable increase in nucleation mode particles
(Fontaras et al., 2009). The European Directive 2003/30/EC set a legal
aim of replacing 20% of conventional fuel in road transportation with
alternative fuel by 2020. The impact of this trade-off between increasing
PNC emissions and the use of biofuels is hard to predict, given that the
toxicity of UFPs produced by bio-fuelled vehicles is unknown.

In many Asian, or other nanoparticle-rich environments, PNCs may
increase further as a result of continuously increasing traffic volumes.
Vehicle technologies, such as the use of DPFs and reducing the sulphur
content in fuel to European levels (<10 ppm) are two factors that can
make a difference in the form of decreased human exposure to high
UFP levels. These vehicle technologies, originally designed to decrease
mass emissions, also seem to be effective in limiting the emission of
primary nano-sized particles, and a simultaneous reduction in the sul-
phur content of fuels will prevent an increase in secondary, nucleation
mode particles (Paasonen et al., 2013). As more new vehicles come on
the market, the impact of DPFs will start to be seen more clearly, at
least in the developed world.

Understanding new particle formation in city environments is im-
portant to accurately estimate PNC and related exposure. Recently,
new instruments have been developed to count these particles down
to 1 nm, but their detailed physical and chemical composition still re-
mains unknown (Kulmala et al., 2013). In practice, new instruments
such as the particle size magnifier, PSM (Vanhanen et al., 2011), neutral
cluster and air ion spectrometer, (N)AIS (Mirme et al., 2007) and chem-
ical ionization with the atmospheric pressure interface time-of-flight
mass spectrometer, (CI)-APi-ToF (Ehn et al., 2010) should be used
simultaneously to obtain sufficient information on new particle forma-
tion and subsequent growth. Presently we are missing long-term con-
tinuous comprehensive observations in megacities. In addition, the
current theories related to nucleation mechanisms have been devel-
oped based on observations in clean environments. Whether these
can explain the “nanoparticle formation events” that occur in the pollut-
ed atmosphere, with abundant potential precursors and strong oxida-
tion capacity (like Beijing), is a key issue to be addressed in further
studies.

UFPs in the atmosphere derive from a considerable number of
sources, even though road traffic emissions are frequently dominant.
To date, there has been relatively little work devoted to disaggregation
of the size distribution into source-related components. This can be
achieved by the application of multivariate statistical techniques to
large datasets of particle number size distribution. Andersen et al.
(2008) were able to fit measured Scanning Mobility Particle Sizer
(SMPS) size distributions by the sum of four log-normal modes with
median diameters at 12, 23, 57 and 212 nm. The data analysed in
terms of particle number in each mode were subsequently used in a
time series epidemiological study. Harrison et al. (2011) combined
SMPS particle size distributions with those measured simultaneously
with an Aerodynamic Particle Sizer to create continuous distributions
from 15 nm to 10 pm diameter. Application of Positive Matrix Factoriza-
tion revealed ten source-related components of size distributions mea-
sured on Marylebone Road, London. Of these, four were related to traffic
on Marylebone Road, arising from semi-volatile engine emissions, solid
particle engine emissions, brake wear and resuspension, accounting re-
spectively for 27, 38, 2 and 5% of the total PNC. Such techniques are a
critical element of the source apportionment of atmospheric UFP and
will find further application in epidemiological studies designed to
identify those components of the emissions having the greatest effect
upon human health. Such research is difficult to conduct beyond
the roadside environment, however, due to the evolution of size

distributions by both particle evaporation (Dall'Osto et al., 2011) and
growth (Beddows et al., 2013), and the influence of regional atmospher-
ic nucleation processes leading to new particle formation.

In terms of calculating the number of deaths (total mortality) as a re-
sult of exposure to airborne UFPs (as described by particle number
count), it is necessary to use an exposure-response relationship that re-
lates a change in particle number count to the number of associated
deaths. Whilst these are abundant in the literature for the effects of ex-
posure to PM concentrations, they are almost non-existent for particle
number. The very few relationships known include that reported by
Atkinson et al. (2010) from a time series study conducted in London,
by Stolzel et al. (2007) for Erfurt, Germany, and more recently by
Meng et al. (2013) for Shenyang, China. These are missing for a broad
range of city environments but are vitally important, as they can differ
notably for different social conditions (e.g. food, sanitation, social condi-
tions, hospital care) in both developed and developing cities, and can re-
sult in huge uncertainty if city/country specific exposure-response
functions are not used for mortality estimates.

The scientific and policy focus on traffic-derived UFPs, resulting in
tighter PN emission standards in many parts of the world, will lead to
a more pronounced contribution from non-vehicle sources (Kumar
et al,, 2013c). Recent data on PN emissions in Europe support these ob-
servations (Fig. S3). For instance, this effect has already been seen in
Romania and Finland, where the traffic contribution to PN is only ~36
and 47% of total PN emissions, and domestic combustion and non-
road traffic (e.g. ships) contribute ~22 and 26%, respectively. Although
it is currently unknown, the contribution from non-vehicle sources
(e.g. light petroleum gas, wood and biomass burning for cooking, unreg-
ulated small-scale industries, power plants and exhaust-emissions from
non-road construction machinery) cannot be neglected when estimat-
ing the total PNC in Asian city environments (Monkkonen et al.,
2005a; Monkkonen et al., 2005b; Pathak et al., 2012).

Future studies should also consider more extensive personal moni-
toring of the UFPs in order to reliably estimate the overall daily exposure
of individuals whilst in different microenvironments of a city environ-
ment. Because of the distinct personal lifestyles of city dwellers, the
exposure to UFPs could be entirely different in diverse microenviron-
ments for different age groups, say, of school children compared with
working adults. For example, a recent Brisbane-based study found that
the proportion of total daily alveolar doses of UFPs for home, school,
commuting, and other environments were 55.3, 35.3, 4.5, and 5.0%, re-
spectively (Mazaheri et al., 2014). The outdoor exposure in this study
represents the sum of nearly half of the schooling and other activities,
which is significantly lower than that (~46% of total exposure) found
for adults in outdoor city environments (Fruin et al., 2008). More per-
sonal monitoring studies, now nearly non-existent for Asian city envi-
ronments, are therefore needed so that a database for the variety
of diverse city environments can be developed. Such a database
can be vital for: (i) apportioning the UFP exposure of different age
groups in various microenvironments, (ii) providing necessary infor-
mation for designing preventative actions to control emissions at the
source, receptor and within microenvironments by improving their
ventilation and air exchange rates, and (iii) developing an essential
tool to identify health risks, set and review air quality standards and
evaluate the effectiveness of policy interventions (Buonanno et al.,
2012a).

We have not discussed here the emergence of a new risk, the pres-
ence of engineered nanomaterials in urban environments (Kumar
et al., 2010c), which are suspected to enter urban air in unknown quan-
tities after separating from their original products (Lowry et al.,, 2012).
These are basically the same as UFPs in terms of their size, but are
known to deposit in target organs, penetrate cell membranes and
lodge in mitochondria, as well as trigger injurious responses (Nel
et al., 2006). A thorough health risk assessment of all nanomaterial-
integrated products is likely to take decades and this will increase fur-
ther with the development of the next generation of nanoparticles
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(Choi et al., 2009; Kumar et al., 2010c). Their unique, highly reactive
physicochemical characteristics are of particular concern in terms of
human health (Xia et al., 2009), but very little is currently known
about their concentration levels in the European environment, and
even lesser for Asian environments (Kumar et al., 2012). A proactive re-
search approach is required to fully reveal their injurious effects and at
the same time, targeted efforts are needed to quantify their ambient
concentrations by developing instruments that are able to distinguish
them from the UFPs produced by other sources, such as traffic.
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